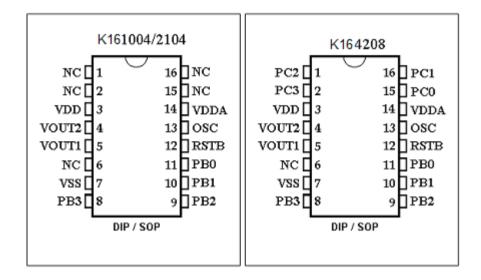


K161004 / K162104 / K164208

DESCRIPTION

K16xxxx is a 8-bit CPU based Voice chip series. It is manufactured with Standard CMOS process with embedded voice storage memory. It can store from 10 to 42sec voice message with 4-bit ADPCM compression at 6KHz sampling rate. 8-bit PCM is also available as user selectable option to improve sound quality. Depending on IC body, there are up to twelve programmable I/O pins. Key trigger and Parallel CPU trigger mode can be configured according to different application requirement. User selectable triggering and output signal options provide maximum flexibility to various applications. Built-in resistor controlled oscillator, 8-bit current mode D/A output and PWM direct speaker driving output minimize the number of external components.

Part Number	Duration	Programmable IO
K161004	10 sec	4
K162104	21 sec	4
K164208	42 sec	8


FEATURES

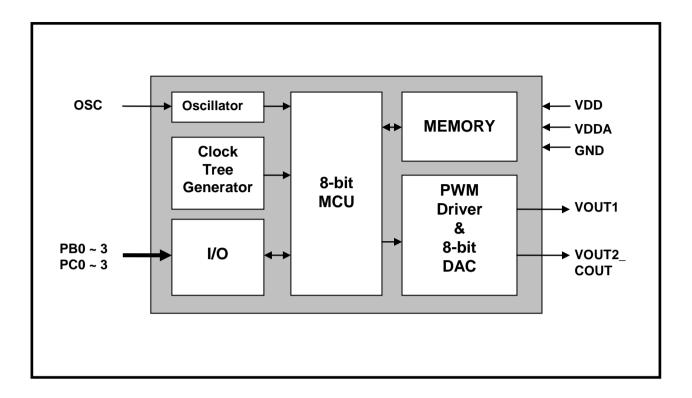
- Standard CMOS process.
- Embedded EPROM.
- Embedded 8-bit MCU.
- 10, 21 and 42sec voice duration at 6 KHz sampling with 4-bit ADPCM compression.
- Combination of voice building blocks to extend playback duration.
- Table entries are available for voice block combinations.
- User selectable PCM or ADPCM data compress.
- Voice Group Trigger Options: Edge / Level; Hold / Un-hold; Retrigger / Non-retrigger.
- Programmable I/Os, Timer Interrupt and Watch Dog Timer.
- Built-in oscillator with fixed Rosc, software control sampling frequency
- 2.2V − 3.6V single power supply and < 5uA low stand-by current.
- PWM Vout1 and Vout2 drive speaker directly.
- D/A COUT with ramp-up ramp-down option to drive speaker through an external BJT.

2

PIN CONFIGURATIONS

PIN DESCRIPTIONS

Pin Names	Description
VOUT1	PWM output to drive speaker directly
VOUT2_COUT	PWM output or COUT DAC output select by programmable option
VSS	Power Ground
OSC	Oscillator input
VDDA	Positive Power Supply
VDD	Positive Power Supply
PBn	Programmable I/O pins (n: 0 to 3 for all KIVR chips)
PCn	Programmable I/O pins (n: 0 to 3 for K164208 only)
RSTB	Reset pin, Low active


Note:

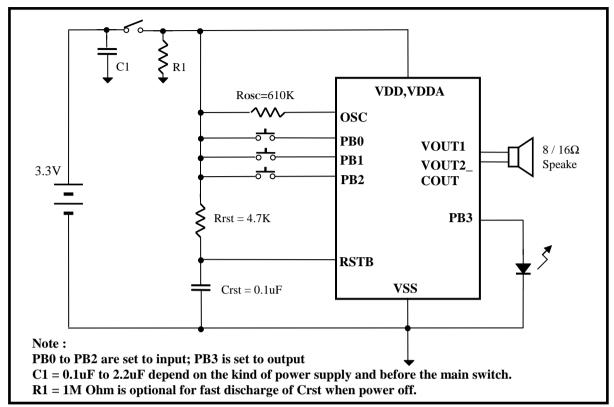
PBn and PCn are software programmable I/O pins that can be set to different configurations such as pure input, input with pull-up, input with pull-down and output. The programmable I/O pins set up will take effect immediately after chip RESET is applied.

3

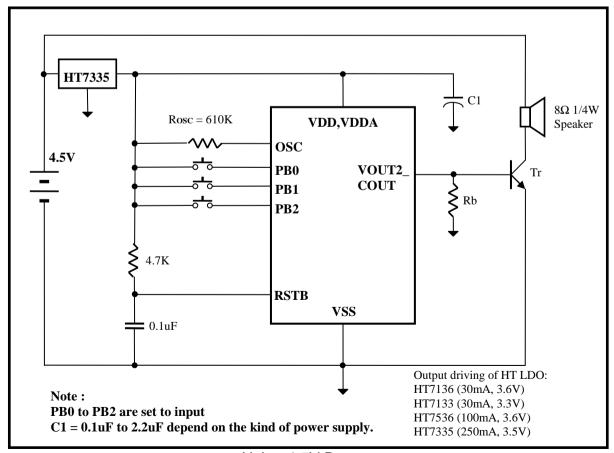
BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

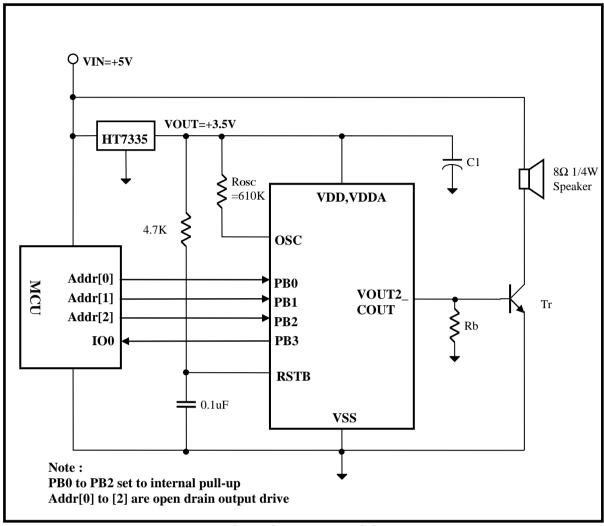
Symbol	Rating	Unit
V _{DD} - V _{SS}	-0.5 ~ +4.0	V
V_{IN}	$V_{SS} - 0.3 < V_{IN} < V_{DD} + 0.3$	V
Vout	V _{SS} <v<sub>OUT<v<sub>DD</v<sub></v<sub>	V
T (Operating):	-40 ~ +85	°C
T (Junction)	-40 ~ +125	°C
T (Storage)	-55 ~ +125	°C


DC CHARACTERISTICS ($T_A = 0$ to $70^{\circ}\mathrm{C},~V_{\mbox{DD}} = 3.0V,~V_{\mbox{SS}} = 0V$)

Symbol	Parameter	Min.	Тур.	Max.	Unit	Conditions
V _{DD}	Operating Voltage	2.2	3.0	3.6	V	
I _{SB}	Standby current	_	1	5	μΑ	I/O properly terminated
lOP	Operating current	_	_	15	mA	I/O properly terminated
V _{IH}	"H" Input Voltage	2.5	3.0	3.5	V	V _{DD} =3.0V
V _{IL}	"L" Input Voltage	-0.3	0	0.5	V	V _{DD} =3.0V
IVOUTL	V _{OUT} low O/P Current	_	130	_	mA	Vout=1.0V
IVOUTH	V _{OUT} high O/P Current	_	-130	_	mA	Vout=2.0V
ICO	C _{OUT} O/P Current	_	-2	_	mA	Data = 80h
lOH	O/P High Current	_	-8	_	mA	V _{OH} =2.5V
l _{OL}	O/P Low Current	_	8	_	mA	V _{OL} =0.3V
RN _{VOUT}	VOUT pull-down resistance	_	100K	_	Ω	VOUT pin set to internal pull-down
RN _{PIO}	Programmable IO pin pull-down resistance	_	1M	_	Ω	PBx, PCx, PDx set to internal pull-down
RU _{PIO}	Programmable IO pin pull-up resistance	3.3K	4.7K	_	Ω	PBx, PCx, PDx set to internal pull-up
ΔFs/Fs	Frequency stability	-3	_	+3	%	V _{DD} = 3V +/- 0.4V
ΔFc/Fc	Chip to chip Frequency Variation	-5		+5	%	Also apply to lot to lot variation


5

TYPICAL APPLICATIONS



Using 3.3V Battery

Using 4.5V Battery

5V CPU Control with COUT

Note:

- 1. C1 is capacitor from 0.1uF to 2.2uF depends on the kind of Vdd source and sound loudness.
 - E.g. If COUT is used, C1 can be 0.1uF. However, if PWM direct drive speaker is used, C1 should be at least 2.2uF
- 2. Rb is base resistor from 120 Ohm to 390 Ohm depends on Vdd value and transistor gain.

7

- 3. Tr is an NPN transistor with beta larger than 150, e.g. 8050D.
- 4. Rosc = 610K Ohm with Vdd=3.0V and support sampling rate up to 14KHz
- 5. For sampling rate higher than 14KHz, smaller value of Rosc should be used.

Bonding Diagrams

K161004

(pad size: 80 um x 80 um)

K162104

(pad size: 70 um x 75 um)

(die size: 2000um x 1000um)

VDDA OSC RSTB PB0 PB1 PB2 PB3 VSS VOUTI COUT VDD LOGO

K164208

(pad size: 70 um x 75 um)

(die size: 1800um x 1300um)

VDDA OSC RSTB PB0 PB1 PB2 PB3 PC0 PC1 PC2 PC3 VSS VOUT1 VOUT2 VDD LOGO

8