Compass B
User’s Guide

Revision 2.0

© ©

Passion [or inmovalion



Trademark

® ©
Innovati®, bod , and BASIC Commander® are registered trademarks of Innovati, Inc.

INnNnoBASIC™ and, cmdBUS™ are trademarks of Innovati, Inc.
Copyright © 2013 by Innovati, Inc. All Rights Reserved.

Due to continual product improvements, Innovati reserves the right to make modifications to its products without prior
notice. Innovati does not recommend the use of its products for application that may present a risk to human life due to
malfunction or otherwise.

No part of this publication may be reproduced or transmitted in any form or by any means without the expressed written

permission of Innovati, Inc.

Disclaimer

Full responsibility for any applications using Innovati products rests firmly with the user and as such Innovati will not be held
responsible for any damages that may occur when using Innovati products. This includes damage to equipment or property,
personal damage to life or health, damage caused by loss of profits, goodwill or otherwise. Innovati products should not be
used for any life saving applications as Innovati’s products are designed for experimental or prototyping purposes only.
Innovati is not responsible for any safety, communication or other related regulations. It is advised that children under the

age of 14 should only conduct experiments under parental or adult supervision.

Errata

We hope that our users will find this user’s guide a useful, easy to use and interesting publication, as our efforts to do this
have been considerable. Additionally, a substantial amount of effort has been put into this instruction manual to ensure
accuracy and complete and error free content, however it is almost inevitable that certain errors may have remained
undetected. If you find any errors in the instruction manual, contact us via email service@innovati.com.tw. For the most

up-to-date information, please visit our web site at http://www.innovati.com.tw.



Table of Contents

OVEBIVIBW ..ttt e e e e et e e et e e et e e aen e 4
APPHICALIONS ... e e e 4
FRATUIES ... e B
(0701014 T=To1 1 ] o R RSP PTPEPRPR 4
SPECITICATIONS ... .t e e e e vt et e et e e e eneees D
CaliDration ... e e e e e e D
Commands and EVENES ... et e e 6
EXample Program .......o..oiii e e e e 9
Appendix A --- Module 1D SEttNG .....c.ovue i e 10
Appendix B --- 12C Format Command Table .............coooieveiiiiiieen 11

Appendix C --- C language Format ............covviiiiiiiiiiiiiie e n. 14



Overview

Innovati’s Compass B module is an easy-to-use, high precision electronic compass. Through
the cmdBUS™ and BASIC Commander®, you can get the azimuth and the magnetic field
intensity. In addition, the user calibration feature is provided to eliminate magnetic field
measurement error generated by magnetic components in surrounding environment.

Applications

® Designs to obtain azimuth and magnetic intensity electronically.
® Projects with deviation measurement feature to enable vehicle to move autonomously.
® Applications related to magnetic field intensity measurement.

Features

Azimuth measurement with 1 to 2 degree heading accuracy.

3-axis magnetic field intensity measurement.

Enable event when the heading direction is beyond the deviation range.

Six refresh rates, up to 50 times per second, for automatic azimuth measurement.
Software or manual calibration by button is available.

Detectable magnetic intensity up to 8 Gauss with 2 milli-Gauss field resolution.
I12C Command syntax available for generic microcontrollers.

Operating temperature: 0 °C ~ 70°C

Storage temperature: -40°C~125°C

Connection

To access Compass B through BASIC Commander®, set the DIP switch to the desired module
ID setting (see Appendix A), and connect the cndBUS™ cable between the module and the
BASIC Commander®.

Figure 1: Connection with the BASIC Commander®



Specifications

@

Figure 2: Pin assignment and switch description

Item Description

1 CmdBUS™ pins: To access the Compass B module through the BASIC
Commander®, connect these pins to the corresponding pins on the BASIC
Commander®. Pay attention to pin assignments while connecting. Incorrect
connection may damage the modules permanently.

2 Module ID Switch: Each module needs to be assigned its own ID not conflicting with
other modules on the same CmdBUS™. This assigned ID will be used in the program
so the BASIC Commander® can communicate with module correctly. Refer to
Appendix A for DIP switch setting.

3 Manual Calibration button: Follow the instruction in Calibration section. The
calibration LED will blink during calibration. When done, press the button again to
exit the calibration mode and the calibration LED will turn off. To reset the settings,
press and hold the calibration button for more than 7 seconds, all the indicator LEDs
blink twice and default calibration settings will be restored.

4 Indicator LEDs from top to bottom are:

Calibration LED: blinks when the module is in calibration mode;

Event LED: blinks when the module is transmitting events;
Status LED: blinks when the module is communicating with BASIC Commander®.

Calibration

To set the module for calibration within the program, use the Calibrate() command. For more
information of this command, see the command table. To set the module manually, press and
hold the Calibration button for two seconds to enter the calibration mode.

Once the module is in calibration mode, keep the module horizontal and rotate it clockwise or
counterclockwise, and perpendicular to the z-axis, as shown in the figure below. Note that the
calibration LED is blinking during calibration. Please do not rotate the module too fast so that



the module can determine the limits in all axes, and do not rotate the module more than 360
degrees.

CompassB | "

Figure 3: Calibration

Place the module horizontally during operation to get accurate measurements. The axis
definition is illustrated as below.

SINE-A

J; = =R immlmﬂ"-‘, by

v T

L=

Figure 4: Axis definition

Commands and Events

The following tables list all the unique commands and events provided with the Compass B
module. Note that essential words in the commands will be written in bold type and italics in
bold type. The bold type word must be written exactly as shown, whereas the italic bold type
words must be replaced with the user values. Note that the innoBASIC language is
case-insensitive.

Before executing the command of Compass B module, declare the corresponding parameters
and the module 1D at the beginning of the program, for example:

Peripheral ModuleName As CompassB @ ModulelD

In addition to the featured cmdBUS™ commands, 12C commands are also available for users
who would like to use our modules in their systems. Check the Appendix B for details.

Command Format Description

Magnetic Field Intensity and Direction Measurement Commands

GetXField(Fx) Read the difference between the central magnetic




GetYField(Fy)

GetZField(Fz)

field intensity and the axial magnetic field
intensity of the x-axis, y-axis and z-axis and
stored in Fx, Fy and Fz, respectively. The return
value ranges from -32768 ~ 32767.

GetAngle(Ang)

Read the azimuth angle of the magnetic North
with respect to the axes assigned in the
SetDimension() command in unit of degrees. The
angle is stored in Ang ranging from 0~359.

GetAngle3D(Angl, Ang2)

Read the azimuth angle of the projection of
magnetic North on x-y plane with respect to the
x-axis in unit of degrees. The angle is stored in
Angl ranging from 0~359. The included angle
between the magnetic North and the z-axis is
stored in Ang2 ranging from 0~179.

Setting of Deviation Angles and Measurement Commands

SetCurrentTargetAngle()

Save the currently measured angle in non-volatile
memory.

SetTargetAngle (Ang)

Save the value of target Ang ranging from 0 to
359 in non-volatile memory.

GetTargetAngle (Ang)

Read the value ranging from 0 to 359 from
non-volatile memory to Ang.

GetDevAngle(Ang)

Read the included angles of the current direction
with respect to the preset base direction in unit of
degree and saves the value in Ang. The value
ranges from 0~180 counterclockwise with respect
to the base direction, and ranges from 0~-179
clockwise with respect to the base direction.

SetDevAngleLimit(Ang)

Set the limit of deviation angle in unit of degrees.
Ang ranges from 0~179 and its default value is 5.

GetDevAngleLimit(Ang)

Return the current deviation angle limit in unit of
degrees and saves the value in Ang ranging from
0~179.

EnableDevAngleLimitEvent()

Enable the event to trigger when the deviation
angle exceed the limit.

DisableDevAngleLimitEvent()

Disable the Deviation Angle Limit event.

Status = GetDevAngleLimitStatus()

Check if the current directional angle exceeds the
deviation angle limit. When the current direction
angle exceeds the limit, this function returns 1 in
Status, otherwise 0.

Measurement Refresh and Calibration Commands




SetRefreshFreq(Rate)

Set refresh rate of the azimuth angle measurement
by the value of Rate. The default value is 0.

Six refresh rates are available:

0 => Refresh every 20 ms (50Hz)

1 =>» Refresh every 50 ms (20Hz)

2 =» Refresh every 100 ms (10Hz)

3 = Refresh every 250 ms (4Hz)

4 =>» Refresh every 500 ms (2Hz)

5 =» Refresh every 1000 ms (1Hz)

GetRefreshFreq(Rate)

Return refresh rate of the azimuth angle
measurement. The return value of Rate ranges from
0 to 5. See command SetRefreshFreq() for details.

Status = GetRefreshStatus()

Check the refresh status. When the azimuth angle
measurement is refreshed, it returns 1 in Status.
After checking the status, it returns 0 in Status.

SetDimension(Dimen)

Assign the 2D plane by setting Dimen with value 0,
1 or 2. The default value is 0.

0 =» x-y plane, 0 degree on x-axis and 90 on y-axis.
1 =>» x-z plane, 0 degree on x-axis and 90 on z-axis.
2 =» y-z plane, 0 degree on y-axis and 90 on z-axis.

GetDimension(Dimen)

Read the 2D plane setting value ranging 0~2 and
store in Dimen. See SetDimension() command for
details.

EnableRefreshEvent()

Enable the event to trigger when the azimuth
measurement is refreshed

DisableRefreshEvent()

Disable the azimuth measurement refresh event.

ABConvert(Ang, Bin)

Convert the Ang in degrees to Bin in binary radians
(Brads). A full circle of 360 degrees is equal to 256
Brads. More than one circle conversion is accepted.
Ang ranges from 0~359 and the return value of Bin
from 0~255.

BAConvert(Bin, Ang)

Convert the Bin in binary radians (Brads) to Ang in
degrees. A full circle of 360 degrees is equal to 256
Brads. Bin ranges from 0~255 and the return value
of Ang from 0~359.

Calibration(Time)

Set the calibration duration with the value of Time.
Five different calibration duration are available:

0 =>» keep calibrating until the button is pressed
again.

1 =>» Calibrate for 10 seconds.




2 =>» Calibrate for 20 seconds.
3 => Calibrate for 30 seconds.
4 =» Calibrate for 60 seconds.
RestoreDefaultCalValue() Restore to the default calibration values.

Events Provided by the Module

FieldRefreshEvent() After EnableRefreshEvent() is executed, this event is
activated when the module refreshes the current angle
measurement. The refresh time varies by the setting of
SetRefreshFreq().

DevAngleLimitEvent() After EnableDevAngleLimitEvent() is executed, this event
is activated when the deviation of the current directional
angle is beyond the setting of SetDevAngleLimit(). The
base direction is set by SetTargetAngle() command.
CalEndEvent() This event is activated automatically when Compass B
calibration is completed. Related Enable/Disable Event
commands are not required.

Example Program

Peripheral myCompass as CompassB @ 0 ‘set module ID to O

Dim IFX As Integer ‘'variable for x-axis magnetic field intensity

Dim IFY As Integer ‘'variable for y-axis magnetic field intensity

Dim wAngle As Word ‘'variable for angle measurement

Sub Main() 'main program
myCompass.SetRefreshFreq(4) 'set the refresh rate
myCompass.SetDimension(0) 'set x-y plane
myCompass.EnableRefreshEvent() ‘enable event
Do:Loop ‘infinite loop

End Sub

Event myCompass.FieldRefreshEvent() ‘'measurement refresh event
myCompass.GetAngle(wAngle) 'get the azimuth
myCompass.GetXField(iFX) 'get x-axis intensity
myCompass.GetYField(iFY) 'get y-axis intensity

Debug CSRXY(1, 5), "Azimuth =", %DEC3 wAngle, CR

Debug CSRXY(1, 6), "X-axis Intensity =", %DEC6 iFX, CR

Debug CSRXY(1, 7), "Y-axis Intensity =", %DECS6 iFY, CR
End Event



Each module needs to be assigned its own ID not conflicting with other modules on the same
CmdBUS™. This assigned ID will be used in the program so the BASIC Commander® can

communicate with module correctly. The table below shows the DIP switch setting for desired

module ID.

Appendix A --- Module 1D Setting

10



Appendix B --- 12C Format Command Table

In addition to the featured BASIC Commander® command format, 12C format is also listed
here for users who would like to use Innovati smart peripheral modules in their systems. The
12C command convention is described as below:

MID: Module ID ranging from 0 to 31 indicated by the DIP switch setting on the smart
peripheral module.

CID: 8-bit Command ID as shown in each command.

CS1: 8-bit Checksum defined as 255 - (MID) x 2 - CID

CS2: Optional second 8-bit Checksum defined as 255 - sum of bytes in between CS1 and
CS2.

CS3: Optional third 8-bit Checksum defined as 255 - MID - sum of bytes in between MID
and CS3.

DMY: 8-bit dummy byte with value 0.

If data is wider than one byte, Little Endian is employed. All the data should be expressed in
hexadecimal format. The following is an example to demonstrate how to constitute an 12C
command sequence. Let’s assume the Module ID is set to 2 and the command ID is 153 and
the WORD-size payload data is 511. The 12C command sequence is:

MID, CID, CS1, DataL, DataH, CS2, DMY

where,

MID =2 (or known as &H02)

CID =153 (or known as &H99)
CS1=255-(2*2)-153=98 (or known as &H62)
DataL = 255 (or known as &HFF)

DataH =1 (or known as &H1)

CS2 = 255 — DataL — DataH = 255  (or known as &HFF)
DMY =0 (or known as &HO0)

The following is an example to demonstrate how to read the returned data. Let’s assume a
Word data type value &H1FF is returned, The 12C command sequence is:

MID, ResultL, ResultH, CS3

where,
MID =2 (or known as &H02)

11



ResultL =255 (or known as &HFF, returned by module)
ResultH=1 (or known as &H1, returned by module)
CS3 = 255 — ResultL — ResultH = 255  (or known as &HFF, returned by module)

Note that the EVENT functions are available only under CmdBUS™ scheme collaborating
with BASIC Commander® and not available for generic microcontrollers. Therefore, event-
related 12C commands are not listed in the table below.

BASIC Commander® Format 12C Format

. MID, 88, CS1, DMY
GetXField(Fx) MID, Ex_L, Fx_H, CS3
MID, 89, CS1, DMY
MID, Fy L, Fy H, CS3
MID, 130, CS1, DMY
MID, Fz_L, Fz_H, CS3

MID, 91, CS1, DMY
MID, Ang_L, Ang_H, CS3

MID, 136, CS1, DMY

MID, Angl L, Angl H, Ang2, CS3
SetTargetAngle (Ang) MID, 134, CS1, Ang_L, Ang_H, CS2, DMY
MID, 135, CS1, DMY

MID, Ang_L, Ang_H, CS3

MID, 96, CS1, DMY

MID, Ang_L, Ang_H, CS3
SetDevAngleLimit(Ang) MID, 97, CS1, Ang, CS2, DMY
MID, 98, CS1, DMY

MID, Ang, CS3

MID, 103, CS1, DMY

MID, Status, CS3

GetYField(FyY)

GetZField(Fz)

GetAngle(Ang)

GetAngle3D(Angl, Ang2)

GetTargetAngle (Ang)

GetDevAngle(Ang)

GetDevAngleLimit(Ang)

Status = GetDevAngleLimitStatus()

SetRefreshFreq(Rate) MID, 104, CS1, Rate, CS2, DMY
MID, 105, CS1, DMY
GetRefreshFreq(Rate)
MID, Rate, CS3

MID, 106, CS1, DMY

MID, Status, CS3

SetDimension(Dimen) MID, 131, CS1, Dimen, CS2

MID, 132, CS1, DMY

MID, Dimen, CS3

MID, 109, CS1, Ang_L, Ang_H, CS2, DMY
MID, Bin, CS3

Status = GetRefreshStatus()

GetDimension(Dimen)

ABConvert(Ang, Bin)

12



BAConvert(Bin, Ang)

MID, 110, CS1, Bin, CS2, DMY
MID, Ang L, Ang_H, CS3

Calibration(Time)

MID, 121, CS1, Time, CS2, DMY

RestoreDefaultCalValue()

MID, 125, CS1, DMY

Note: 12C is a Registered Trademark of Philips Semiconductors.

13




Appendix C --- C language Format for Ozone™ Board

In addition to the featured BASIC Commander® command format, C language format is also
available for Innovati’s 8-bit Ozone ™ controller board.

Note that the EVENT functions are available only under CmdBUS™ scheme collaborating
with BASIC Commander®. Therefore, event-related commands are not listed in the table

below.

BASIC Commander® Format

GetXField(Fx)

C language Format for Ozone™
void GetXField(long Fx)

GetYField(Fy)

void GetYField(long Fy)

GetZField(Fz)

void GetZField(long Fz)

GetAngle(Ang)

void GetAngle(unsigned long Ang)

GetAngle3D(Angl, Ang2)

void GetDevAngle(unsigned long Angl,
unsigned int Ang2)

SetTargetAngle(Ang)

void SetTargetAngle(unsigned long Ang)

GetTargetAngle(Ang)

void GetTargetAngle(unsigned long Ang)

GetDevAngle(Ang)

void GetDevAngle(long Ang)

SetDevAngleLimit(Ang)

void SetDevAngle(unsigned int Ang)

GetDevAngleLimit(Ang)

void GetDevAngle(unsigned int Ang)

Status = GetDevAngleLimitStatus()

boolean GetDevAngleLimitStatus(void)

SetRefreshFreq(Rate)

void SetRefreshFreg(unsigned int Rate)

GetRefreshFreqg(Rate)

void GetRefreshFreq(unsigned int Rate)

Status = GetRefreshStatus()

boolean GetFreshStatus(void)

SetDimension(Dimen)

void SetDimension(unsigned int Dimen)

GetDimension(Dimen)

void SetDimension(unsigned int Dimen)

ABConvert(Ang, Bin)

void ABConvert(unsigned long Ang, unsigned
int Bin)

BAConvert(Bin, Ang)

void BAConvert(unsigned int Bin, unsigned
long Ang)

Calibration(Time)

void Calibration(unsigned int Time)

RestoreDefaultCalValue()

void RestoreDefaultCalValue(void)

Sample Program

#include <ozone.h>

CompassB myCompass(0);

//set module ID to O

14




unsigned int angle; /Ivariable for angle measurement
int fx; /Ivariable for x-axis magnetic field intensity
int fy; /Ivariable for y-axis magnetic field intensity

void setup()

{
Serial.begin(115200); /[serial communication Baud rate

}

void loop() /linfinite loop

{
myCompass.GetAngle(angle); /lget the azimuth
Serial.print("Azimuth = "); /[display
Serial.printin(angle); I
myCompass.GetXField(fx); /llget x-axis intensity
Serial.print("X-axis Intensity ="); /ldisplay
Serial.printin(fx); 1
myCompass. GetYField(fy); /llget y-axis intensity
Serial.print("Y-axis Intensity = "); /[display
Serial.printin(fy); 1
delay(200); /lpause 200ms

}

15



Appendix D --- C language Format for Arminno™

In addition to the featured BASIC Commander® command format, C language format is also
available for Innovati’s 32-bit Arminno™ controller board.

Note that the EVENT functions are available only under CmdBUS™ scheme collaborating
with BASIC Commander®. Therefore, event-related commands are not listed in the table

below.

BASIC Commander® Format C language Format for Arminno™

GetXField(Fx)

void GetXField(short Fx)

GetYField(Fy)

void GetYField(short Fy)

GetZField(Fz)

void GetZField(short Fz)

GetAngle(Ang)

void GetAngle(unsigned short Ang)

GetAngle3D(Angl, Ang2)

void GetAngle3D(unsigned short Ang1l,
unsigned char Ang2)

SetTargetAngle(Ang)

void SetTargetAngle(unsigned short Ang)

GetTargetAngle(Ang)

void GetTargetAngle(unsigned short Ang)

GetDevAngle(Ang)

void GetDevAngle(short Ang)

SetDevAngleLimit(Ang)

void SetDevAngle(unsigned char Ang)

GetDevAngleLimit(Ang)

void GetDevAngleLimit(unsigned char Ang)

Status = GetDevAngleLimitStatus()

boolean GetDevAngleLimitStatus(void)

SetRefreshFreq(Rate)

void SetRefreshFreq(unsigned char Rate)

GetRefreshFreq(Rate)

void SetRefreshFreq(unsigned char Rate)

Status = GetRefreshStatus()

boolean GetFreshStatus(void)

SetDimension(Dimen)

void SetDimension(unsigned char Dimen)

GetDimension(Dimen)

void GetDimension(unsigned char Dimen)

ABConvert(Ang, Bin)

void ABConvert(unsigned short Ang, unsigned
char Bin)

BAConvert(Bin, Ang)

void BAConvert(unsigned char Bin, unsigned
short Ang)

Calibration(Time)

void Calibration(unsigned char Time)

RestoreDefaultCalValue()

void RestoreDefaultCalValue(void)

Sample Program

#include "arminno.h"
CompassB myCompass (0);

//set module ID to O

16




unsigned short angle; /Ivariable for angle measurement

short fx; /Ivariable for x-axis magnetic field intensity

short fy; /Ivariable for y-axis magnetic field intensity

int main(void)
{
while(1)
{
myCompass.GetAngle(angle);
printf("Azimuth = %d\r\n", angle);
myCompass. GetXField(fx);

printf("X-axis Intensity = %d\r\n", fx);

myCompass.GetGetYField(fy);

printf("Y-axis Intensity = %d\r\n", fy);

Pause(200);

17

/linfinite loop

/Ivariable for angle measurement

/[display

/Ivariable for x-axis magnetic field intensity
/[display

/Ivariable for y-axis magnetic field intensity
/[display

/lpause 200ms



