BASIC MICRO STUDIO
SYNTAX MANUAL

BASICMICRO.COM (C) 2011 VERSION 2.0

Warranty

Basic Micro warranties its products against defects in material and workmanship for a period of 90
days. If a defect is discovered, Basic Micro will at its discretion repair, replace, or refund the purchase
price of the product in question. Contact us at support@basicmicro.com. No returns will be accepted
without the proper authorization.

Copyrights and Trademarks

Copyright®© 2009-2011 by Basic Micro, Inc. All rights reserved. “MBasic”, “BasicATOM Pro”, “The
Atom”, “BasicATOM”, BasicATOM Nano” and “Basic Micro” are registered trademarks of Basic Micro
Inc. Other trademarks mentioned are registered trademarks of their respective holders.

Disclaimer

Basic Micro cannot be held responsible for any incidental, or consequential damages resulting from
use of products manufactured or sold by Basic Micro or its distributors. No products from Basic Micro
should be used in any medical devices and/or medical situations. No product should be used in a life
support situation.

Contacts

Email: sales@basicmicro.com

Tech support: support@basicmicro.com
Web: http://www.basicmicro.com

Discussion List
A web based discussion board is maintained at http://forums.basicmicro.com

Updates
In our continuing effort to provide the best and most innovative products, software updates are made
available by contacting us at support@basicmicro.com or via our web site.

Contents

[Ha) Ao Yo (U734 o] o [RS PP PSPPIt 7
What iS the BaSICATOM? ... e i eans 7
Programming LANQUAGE. ccuuieuneiaeie e ea e e 7
0] 1071 LT PP 7
ST 0 LU] o= PP 7

Hardware INtroducCtionc.ieiiiiiiii e 9
Module Hardware COMPATiSON.ceuuieiiiiieei e e 9
Chip Hardware COMPAIISON.ccuu it e e e e aees 10
Instructions Per SECONA(IPS)cuuiiiiii e 10
NANO B .o s 11
NANO L8 .o e 11
NANO 28 ... s 12
NANO 40 .o e 13
NANO 28X e 14
(AN F= U 0 0 G PP 15
BASICATOM 24IM et e e e e e et e enns 16
BASICATOM 28IM ..e ittt e e e e e et e e e e et eaeenns 16
BASICATOM O ..eieniiii ettt ettt e e e e e e et e e e e et eaeenns 17
BaSICATOM Pro ONEIM ...cuiiiiiiii et e e et e e 18
BASICATOM PrO 24 ... e e et eae e 18
BaSICATOM PrO 28 ...cuiiiiiiieee et e et eae e 19
BaSICATOM Pro 40 ...cuiniiiii e e e e e et e eaas 19

QUICK STArt GUIAEceeic e 21
TS B (0o [=10 FA PP 26
Downloading The Programl.... ... i 26
BIINKING LEDcuniie et e e e e e eeas 30

ValiADIES. ... s 32
Variable TYPES ... e 32
Variable NaAMESo 33
Variable MOAIfIErS. ... ou e 33
Variable ATTAYS. ...t et 34

(70] 9153 =1 o 1 = PPN 37
CoNSLANT TADIES ...eniiii e 37

PiNS @nNd POrTS .on s 39
PiN CONSEANTS ...ieiiiit i et e e e e e e e e e et e enas 39
PINVariablesovniiii e 39
Pin and Port IN/JOUT Variable NamesS........ccueiiiiiiiiiieieeeeeeee e 40
Direction Variablescuiriiiiee e 41
INPUL OQUEPUL ettt e e e e e e e 41
Pin and Port DIR VariableS NamesSccoiuiiiiiiiiiei e 42

V= o T PP PRPP 44
NUMDEE BASES .. cviiiiiiiiie ettt et e e e e e e e e e et eaeenns 44
Math @and OPEIALOISceuieieii ettt e e e e e e eens 44
(O] 01T =1 (o] £ TP 45
Precedence Tableoeieiii e 46

Contents

= (NEQALIVE) ..t 47
L= F TSP 47
SIN, €O ettt e n e e enae 48
51O TSP PTRRSP 49
[0 B PSPPSRSO 49
SQR (SQUAIE ROOL) ... c.uieteeiee ettt et et e e e e e e eeas 50
BINZ2BCD, BCD2BIN.....ccitiiieiieiiiiee ettt e et 51
RANDOM ...ttt ettt e et et e e e e e e e e e ee s 51
18] o) (=T 1T) I PP 52
F (AAAITION) et 52
F (MUIEIPICALION) et 52
F A (DA (] o) PP UPT TR 53
F* (High MUItIPHCAtION) ...ceuniei e 53
*/ (Fractional MUltiplication)couuoiiiii e 54
A K ettt et et e e e e e ra e 55
VN et e e r e e e e e 55
D] TP PP PP SP 55
RV ettt e e e 55
S €] T L0 = 1 PP PP PP 56
> (SHIft RIGNT) ¢t 56
& (AND)) ettt e e e e anae 57
| EOR) ettt ettt n e e enae 57
N (EXCIUSIVE OR) ettt ettt e e e e e 58
&/ (AND NOT) eeieeetietiee ettt ettt et e et e e et e e e e e e e eeba e e eaeeens 58
[/ (OR NOT) ettt ettt ettt e ettt e e e e e et e e e e e eaaa e e e eeeees 58
AN (XOR INOT) ettt ettt e et e e e e e enb e e e e e eeeeas 59
e (=Le VT 1) PP 59
<> (NOT EQUAI TO) - ettt ettt e e e e e e 59
S (=TT T) T PP 59
= (Greater ThaN) ... 60
>= (Greater Than or EqUal TO)cuuiiuuiiiiiiiie e 60
AN e e e e e e e e e e e e e eeaaa s 60
(O PP UUPPPTPTRUPPPPPIN 61
)0] T TSP PT R UPPPPPPPI 61
[PP PP 62
Floating POINt Math ... 63
Floating POINT OPEIatOrSuiui et eas 63
B 11 PO UPPPPTPTRUPPPPPIN 63
O] 0 N PP UPPPPTPTRRUPPPPPIN 63
10 3 PP 64
B SN et et e e 64
610 1 ST PP PPTRRSP 64
| PP PPRPTRR SO 64
FASTN et ar s 65
FAC DS . ettt e e e ar e 65
FATAN Lttt e e ettt e e e e e 65
I PP PP 65
PP RPTRRTSP 66
HYPEerbolic FUNCLIONSc.uiieiie e 66
BN H L e 66

Contents

0@ 1] o R 66
L A N PR 67
FATANH Lot 67
V[0 o [T PP P PPN 69
5] O PR 71
0] I 72
[PR 73
RS 74
1 1= P 75
] 1= P 76
2] 1 PR 77
L0111 78
1 1 P 79
] =1 1 P 80
PR 80
PR 81
LI 11 82
0] L 2 82
L1 I 82
L S 1 82
CommMaNd REFEIENCE ... e 84
N 1 P 85
FN I 1V P 87
BRANCH ... ettt e et e e aas 88
2 O 1O] PR 90
(O I 2 = 93
(01 11 |\ 94
DEBUGe ittt ettt et et et 95
DEBUGIN ...ttt et e et e e e e e et e e e raeeanns 97
DO = WHILE. ...e ettt e e e e e e e e e eas 99
[1,11 10 101
[11O 1 1 103
EN D et 105
O = 1 O] 106
o N2 107
O S | = 108
FREQOUT .ot e e e e e et e e e e eeaaas 110
(€0 5] U 112
(0 1 1 114
[€] 115
[LT 116
[ST = 1N 118
[ST = LU 122
[ST = 4V T 123
IF... THEN...ELSEIF...ELSE...ENDIF ...ttt 125
N2 PR 129
12 0L 1 1 PR 130
12 O N PR 133
[0] 11N I 136

Contents

LCDWRITE .ttt et e e e e e 138
LCDREAD ...ttt ettt 143
LOOKDOWN ...ttt ettt e e e e e e e e 145
LOOKUP ..ttt ettt e 147
O e 149
N A P s 150
OWVIN . et e e e e 151
OV OUT .ttt ettt ettt e e e e e e e e e e e 153
OUT PUT ettt et e e et e e e e e e 155
PAUSE ...t 156
PAUSEUS ...ttt e 157
PAUSECLEK ...ttt ettt 158
PULSIN Lttt ettt e e e e e e e e 160
PULSOUT .ottt ettt e e e e e e e e e e e 162
P M e 164
RCTIME ...ttt e e e 166
READ .. 169
READDM ...ttt 170
REPEAT = UNTIL. ettt e 171
RETURN L.ttt ettt e e e e e e e e e e e 172
REVERSE ... ettt 174
SERIN e 175
SEROUT ettt 180
SERVO et 185
SHIFTIN Lot 186
SHIFTOUT Lt 191
S B P e 194
SOUND . .1ttt et 195
SOUNDZ ..ttt et 197
ST P e e 198
S Y A P e 199
TOGGLE ..ttt 200
WHILE = WEND ...t e e e 201
W RITE ettt e 203
WRITEDM .ottt ettt et n e e e eenneees 204
E o) (=T U] o TP 206
BasiC StamP CONVEISION ... e 211
COMPIIEEN DIFECTIVES ...t e 218
RESEIVEA WOIAS ..ot 223

Introduction

Introduction

You have now entered the exciting world of BasicATOMs. No other microcontroller on the market is
as easy to learn yet still remains powerful enough to be under the hood of some of the most popular
robots to be found on the internet. Some of the top rated Youtube robot videos are powered by a
BasicATOM Pro.

What is the BasicATOM?

The BasicATOM and BasicATOM Pro modules are self contained micro computers. There power

regulation, clock system and communication hardware are all built in. All you need to do is supply
power and a connection to your computer. The Nano series is the core of the BasicATOM. Except
it requires you to supply the power regulation and communication system. The clocking system is
internal to the Nano series.

Programming Language

MBasic is the programming language which is used to program the BasicATOM series. MBasic is
based on a subset of BASIC. In general it is considered to be one of the most widely used language
aside from C. The language itself has been around for years. It was the first product created by
Microsoft in the early days for one of the first home built programmable computers called the Altair.
The BasicATOM Pro does support C but the primary focus of this manual is centered around MBasic.

Software

Basic Micro Studio is the main piece of software that you will be using to write your code for any of
the Basic Micro products such as BasicATOMs or BasicATOM Pro modules. It is commonly referred
to as an Integrated Development Environment or IDE for short. The IDE contains 3 main parts. A text
editor for writing programs, a compiler to translate your program into something the microcontroller
will understand and a loader to download your program to the microcontroller. There are several
advance features that will greatly help in creating your program and are documented in this manual.

Resources

There are several additional resources available when learning MBasic. There are forums available
at Basicmicro.com. The forums offer a search function and most answers to your questions can be
found. There are additional forums available at lynxmotion.com.

Hardware

Hardware

Introduction

Hardware Introduction

Lets introduce the hardware. All modules are pin compatible and mostly code compatible. Nanos are
not pin compatible with modules but are code compatible. As you move up in the line, the capabilities
increase. Some features are not backward compatible. The BasicATOM Nano is the beginning of

the scale with BasicATOM in the middle and BasicATOM Pro at the top of the scale in regards to
performance and capabilities. Product datasheet are available for download at Basicmicro.com.

Module Hardware Comparison

Description Atom24 Atom28 Atom40 ProONE Pro24 Pro28 Pro40

Temp Range 0-70C 0-70C 0-70C 0-70C 0-70C 0-70C 0-70C
Flash 14K 14K 14K 32K 32K 32K 56K
RAM 0368 368 368 2048 2048 2058 4096
EEPROM 256 256 256 0 0 4096 4096
Bytes Bytes Bytes Bytes Bytes Bytes Bytes
110 16+4 20 32 8 16 20 32
AD 9 10 14 4 4 8 8
Clock 20MHz 20Mhz 20Mhz 16Mhz 16Mhz 16Mhz 20Mhz
IPS 33,000 33,000 33,000 100,000+ 100,000+ 100,000+ 125,000+
Floating Point YES YES YES YES YES YES YES
32 Bit NO NO NO YES YES YES YES
Hardware
32 Bit YES YES YES YES YES YES YES
Software
UARTS 1 1 1 1 1 1 2
PWM 2 2 2 3 3 3 6
Hardware

Introduction

Chip Hardware Comparison

Description Nano8 Nano18 Nano28 Nano28X Nano40X
Temp Range 0-70C 0-70C 0-70C 0-70C 0-70C 0-70C
Flash 35 7K 14K 14K 14K 14K
RAM 128 368 368 368 368 368
EEPROM 0 256 256 256 256 256
Bytes Bytes Bytes Bytes Bytes Bytes
110 5 15 24 35 22 33
AD 4 6 11 14 11 14
Clock 8MHZ 8MHz 8MHz 8Mhz 20MHz 20Mhz
IPS 13,000 13,000 13,000 13,000 33,000 33,000
Floating Point YES YES YES YES YES YES
32 Bit NO NO NO NO NO NO
Hardware
32 Bit YES YES YES YES YES YES
Software
UARTS 0 1 1 1 1 1
PWM 1 1 2 2 2 2
Hardware

Instructions Per Second(IPS)

The IPS specification for the modules is calculated differently on the BasicATOM and BasicATOM
Pro modules. The BasicATOM IPS is the absolute maximum basic instructions per second. On the
BasicATOM Pro the IPS is the average basic instructions per second of all the basic instructions that
do not have inherent delays in them(pause, serin, serout etc are excluded from the calculation since
their internal delays are part of their function). Some commands can run over 500,000 IPS and some
much slower (i.e. floating point divides).

10

Hardware

Nano 8

The BasicATOM Nano 8 is a programmable microcontroller. The Nano 8 requires a regulated 5VDC
power source. It has 5 general purpose I/O, 3K of program memory, 100 Bytes of RAM and 4 Analog
to Digital pins.

VCCP [1.u a] | vss
seR[|2 = 71 | PO
P3 (|3 i 6] | P1
RES [|4 s] | P2

Nano 18

The BasicATOM Nano 18 is a programmable microcontroller. The Nano 28 requires a regulated
5VDC power source. It has 15 general purpose 1/0, 7K of program memory, 300 Bytes of RAM,
256bytes of EEPROM and 6 Analog to Digital pins.

P10 (1 18]] P9
P1L(]2 17]] P8
SER(|3 16]] P13
RES [|4 5]) P12
VSS [|5 § 14f] vVCC
PO(Js = 13]]P7
PL(|7 12]] P6
P2(|s 11]) P5
P3(fo 1o0f | P4

11

Hardware

Nano 28

The BasicATOM Nano 28 is a programmable microcontroller. The Nano 28 requires a regulated
5VDC power source. It has 24 general purpose 1/0, 14K of program memory, 300 Bytes of RAM,
256bytes of EEPROM and 11 Analog to Digital pins.

RES
P16
P17
P18
P19

SER
P20

VSS
P22
P21

P8
P9
P10
P11

e O Y A B

a7 ouep

27

26

25

G S B W R

24

23

P7
P6
P5
P4
P3
P2
P1
PO
vee
VsSS
P15
P14
P13
P12

12

Hardware

Nano 40

The BasicATOM Nano 40 is a programmable microcontroller. The Nano 40 requires a regulated
5VDC power source. It has 35 general purpose 1/0, 14K of program memory, 300 Bytes of RAM,

256bytes of EEPROM and 14 Analog to Digital pins.

RES
P28
P29

o
w
o

o
=
o

P11
P16
P17

(- 3 - 2 (1) 1) 1 7 1 1) 1) [[[[

S
1 40
2 39
3 38
4 37
5 36
6 35
7 34
5 33
9 - 32

2 31
10 =
11 - 30

o
12 29
13 28
14 27
15 26
16 25
17 24
18 23
19 22
20 21

S NS B G S B S G B S G B S G S G G S G S VU D B W W

P7
P6
P5
P4
P3
P2
P1
PO
vee
Vss
P23
P22
P21
P20
P15
P14
P13
P12
P19
P18

13

Hardware

Nano 28X

The BasicATOM Nano 28X is a programmable microcontroller. The Nano 28X requires a regulated
5VDC power source and 20Mhz resonator. It has 22 general purpose 1/0, 14K of program memory,

300 Bytes of RAM , 256bytes of EEPROM and 11 Analog to Digital pins.

RES (]
P16]
P17 [
P18]
P19]
SER []
P20 (]
VSS (]
P22 []
P21 []

P8 [

P9 (|
P10 (]
P11 (]

10

11

12

13

14

S

XBZ ouep]

28

27

26

25

24

23

22

21

20

19

15

17

16

15

(] P7
[] P6
(] P5
[] P4
(] P3
(] P2
(] P1
(] PO
|] VCC
] VSS
[] P15
[] P14
[] P13
[] P12

14

Hardware

Nano 40X

The BasicATOM Nano 40X is a programmable microcontroller. The Nano 40X requires a regulated
5VDC power source and 20Mhz resonator. It has 33 general purpose 1/0, 14K of program memory,

300 Bytes of RAM , 256bytes of EEPROM and 14 Analog to Digital pins.

RES (]
P28 (]
P29 []|
P30
P31
SER
P27
P24
P25
P26
vee
VSS
P33
P32
P8
P9
P10
P11
P16 (|
P17 [|

(S (Y

N\ 4

1 40
2 39
3 38
4 37
5 36
6 35
7 34
8 33
g - 32

5 31
10 =
11 . 30

_
12 » 29
13 28
14 27
15 26
16 25
17 24
18 23
19 22
20 21

S A VU N VD N D N G G G N G (N U B N WD B U

P7
P6
P5
P4
P3
P2
P1
PO
vee
VSS
P23
P22
P21
P20
P15
P14
P13
P12
P19
P18

15

Hardware

BasicATOM 24m

The BasicATOM 24m is a self contained microcontroller with all its support circuity built in. It has 16
general purpose I/0, 8K of program memory, 300 Bytes of RAM, 256bytes of EEPROM. The module
has 4 additional pads, 3 of which are Analog to Digital capable (AX3, AX2, AX1 and AX0) on its

underside.

SOuUT
SIN
ATN
VSS
PO
P1
P2
P3
P4
P5
P6
p7

BasicATOM 28m

PIN ONE

AX3 AX2 AX1 AXO

VIN
VSS
RES
VCC
P15
P14
P13
P12
P11
P10
P9
P8

The BasicATOM 28m is a self contained microcontroller with all its support circuity built in. It has
20 general purpose 1/0, 8K of program memory, 300 Bytes of RAM, 256bytes of EEPROM with 10

Analog to Digital pins.

SouT
SIN
ATN
VSS
PO
P1
P2
P3
P4
P5
P6
P7
P16
P17

PIN ONE

VIN
VSS
RES
VCC
P15
P14
P13
P12
P11
P10
P9
P8
P19
P18

16

Hardware

BasicATOM 40m

The BasicATOM 40m is a self contained microcontroller with all its support circuity built in. It has
32 general purpose /0O, 8K of program memory, 300 Bytes of RAM, 256bytes of EEPROM with 14
Analog to Digital pins.

PIN ONE
souT = VIN
SIN B VSS
ATN =) RES
VSS — vCC
PO — P15
P1 — P14
P2 —) P13
P3) P12
P4 IR) P11
P5 - M P10
P6 :) P9
P7 O) Ps
AX0 : Bl AX2
AX1 B) /X3
P16) P27
P17 =) P26
P18 D- =) P25
P19 = = P24
P20 & P23
P21 © P2

17

Hardware

BasicATOM Pro ONEm
The BasicATOM Pro ONEm is a self contained microcontroller with all its support circuity built in. It
has 8 general purpose I/0, 32K of program memory, 2K of RAM and 4 Analog to Digital pins.

PIN ONE -> l

BasicATOM Pro 24m
The BasicATOM Pro 24m is a self contained microcontroller with all its support circuity built in. It has
16 general purpose 1/0, 32K of program memory, 2K of RAM and 4 Analog to Digital pins.

PIN ONE
SouT VIN
SIN VSS
ATN RES
VSS VCC
PO P15
P1 P14
p2 P13
P3 P12
P4 P11
P5 P10
P6 P9
P7 P8

15

Hardware

BasicATOM Pro 28m

The BasicATOM Pro 28m is a self contained microcontroller with all its support circuity built in. It has
20 general purpose 1/0, 32K of program memory, 2K of RAM, 4K bytes of EEPROM and 8 Analog to

Digital pins.

BasicATOM Pro 40m

P16
P17

PIN ONE

VIN
VSS
RES
VCC
P15
P14
P13
P12
P11
P10
P9
P8
P19
P18

The BasicATOM Pro 40m is a self contained microcontroller with all its support circuity built in. It has
32 general purpose /0O, 56K of program memory, 4K of RAM, 4K bytes of EEPROM and 8 Analog to

Digital pins.

souT
SIN
ATN
VSS
PO
P1
P2
P3
P4
P5
P6
P7
P28
P29
P16
P17
P18
P19
P20
P21

PIN ONE

=
=2
=2
=
=2
=
=
=
=2
=
=
=
=2
=
=2
=
=
=
=
=

VIN
VSS
RES
VCC
P15
P14
P13
P12
P11
P10
P9
P8
P30
P31
p27
P26
P25
P24
P23
P22

19

Quick Start

Quick Start

20

Quick Start

Quick Start Guide

The next few pages will go over setting up the hardware, software and creating your first program.
This section is designed to teach you the basics of using the BasicATOM microcontroller line. If you
are using the USB on the development board the drivers must be installed correctly first. See the
development boards data sheet.

Equipment Requirements
» BasicATOM Pro module
» USB Development Board or compatible
» PC running Windows XP or later
» USB cable

BasicATOM USB Development Board
The first step is to insert the microcontroller into the development board socket. Make sure pin 1 of
the microcontroller is aligned to pin 1 of the socket.

1. Insert the BasicATOM
microcontroller.

2. Make sure pin 1 of the i'
microcontroller is aligned
to pin1 of the socket.

3. Connect a 6-9V 500mA
center positive wall adapter.

4. Connect the B side of
a USB 2.0 compliant
cable.

Center POS+
6-9 VDC

4) BASIC MICRO

TECHNOLOGY AT WORK
POWER

S1 'n' Reset
i) i 5
G LLLITTITTTTET]
>

USB ON

— N ™M T 1N O N 0 O O
N EEEE ®§
N EEEEE
NS
N
N

=] (=] [] [m] (] 1
(=] (m] [w] [m] (] 2
(=] (m] [m] [m] (] 3
=] (=] [m] [m] (w] 4
=] (=] [] [m]] 5
=] (=] [w] [m] (W] 6
=] (m] [m] [m] (] 7
=] (=] [w] (] (w] 8
(=] (] [w] [m]] 9
(=] (=] [m] [m])21
=] (=] [m] [m] (@]22
(] (m] [m] [m] (w]23
(=] (=] [m] [m] (m]24
=] (=] [] [m] (m]25

fghiij

abcde
EHEEEE
CICICICIC
sEEENE®
s EEEEE
(| smEEE®
o @ @ @ &
HEEEE
2 @ @ @ &
3 @ @ & &
JEE ® E &
s @ @ & &
o @ @ & &
7 @ @ & &
s @ E & &
o @ @ @ &
20 @ @ & &
21E @ @ @ &
2o § @ & &
23 @ @ & &

BasicATOM USB Dev Board (c) 2009
24[m] [m] [m] [m] [m]
25m] (=] (=] [m] m]

6 (=] =] [m] [m] m]
7 (=] [m] [m] (] [m]
8 (] =] [m] [m] (m]
9 (] (m] [m] [m]]

21

Quick Start

Nano Development Board

The first step is to insert the microcontroller into the Nano Development board socket. Make sure pin
1 of the microcontroller is aligned to pin 1 of the socket. If you are using the USB on the development
board the drivers must be installed correctly first. See the development boards data sheet.

1. Insert the Nano
microcontroller.

2. Make sure pin 1 of the
microcontroller is aligned
to pin1 of the socket.

3. Connect a 6-9V 500mA
center positive wall adapter.

4. Connect the B side of
a USB 2.0 compliant
cable.

e s|s|] OABS

(%)
o)
2
o
N
.
.
.
R14
(|
=
o
lw]

.dr

9 (m] [] w] (] [m] (w] [w] =] (] [m] o
To[m] [m] [] [w] [m] [m] [w] (=] [w] [m]10
11[m] [m] [w] [w] m] (m] [w] =] [m]] 11
12(m] [m] [] w] [m] (w] [] =] [m] [w]12
13(m] [m] [m] w] [m] (m] [] =] [m] [w]13
14[m] [m] [m] [w] [m] (m] [] =] (] [w]14
15(m] [m] [u] (] [m] =] [=] (=] [m] [m]15
16[m] [m] [m] [w] [m] =] [w] (=] [m] [m]16
17[m] [w] [] w] [m] (m] [] =] (] [w]17
18[m] [m] [m] [w] [m] (m] [w] =] [m] [w]18
1o[m] [m] [m] [w] [m] (m] [] =] (] [w]19
20(m] [m] [m] [m] [m] (m] [w] (=] [m] [m]20
21[m] [m] [w] w] [m] (=] [m] =] [m]] 21
22(m] [m] (] [m] (] (w] [] [m] [m] [w]22
23(m] [m] [m] [m] (] (w] [] [m] [m] [m]23
24(m] (] u] [m] [m] (m] [] [m] [m] [w]24
25(m] [m] [m] [m]] (w] [m] [m] (] [m]25
26(m] [m] u] (] [m] (m] [m] [m] [m] [m]26
27(m] [m] [m] [m] [m]

LAY pieog A8 OueN INOLvolsed

Of OueN NOLvoiseg

00
918 ghd 1D

8002 (0) Wwoo oolwolseg

22

Quick Start

Quick Start

The first task before writing any program is installing and setting up Basic Micro Studio. Studio is
the main piece of software that you will be using to develop your code for the BasicATOMs. It is
commonly referred to as an Integrated Development Environment or IDE for short. The IDE contains
3 parts. A text editor for writing programs, a compiler to translate your program into something the
microcontroller will understand and a loader to download your program to the microcontroller.

Equipment Requirements

* Any BasicATOM module

+ USB Development Board or compatible
» PC running Windows XP or later

+ USB cable

Basic Micro Studio Installation

You can download Basic Micro Studio from the downloads section at Basicmicro.com. Before
installing Studio make sure you are logged in as an Administrator. Start installing Studio by double
clicking the installer icon. The installation process if fairly quick and painless. Once the installation is
complete, start Studio from the Start Menu -> Programs -> Basic Micro -> Basic Micro Studio.

Overview
To begin lets get familiar with some of Studios features. The following screen is what you should see
when first starting Basic Micro Studio.

™1 Basic Micra Studia
C Dk Yew Propct fook [Debudoer Lep

Dkl XHE S ¥ e=crowes * A i Coat

Wospae: wox

b | Frvl | | Fnd 2 | Traminat | | Trmnal 2 | Termsnal 3 | Termina 4 | fuld |

Fer Help, press FL A0 WM 50T

23

Quick Start

Studio Setup

Before using Basic Micro Studio you must set the microcontroller that will be used. There are 3
drop down menus as shown below. The first sets the microcontroller family. The second sets the
microcontroller type and the last sets what COM port the microcontroller is attached too.

™ Hasic Micro Studia
e View Project ook [wbugier el
UQH .I,ihgﬂ B BanATOHPG *., BaskATCMPro 28 -

i
006

-

febug | Frd | | Fnd 2 | Teeminal | | Trmnal 2 '.nuwzlmnwhfm[
For Help, press FL —

24

Quick Start

1. Microcontroller Family - is the main microcontroller family groups. BasicATOM Pro, BasicATOM
Nano and BasicATOM. Choose the microcontroller family from drop down (1) as shown
below:

%1 Basic Micro Studio

: File View Project Tools Debugger Help
DEE & BB S B |bascroMr | *| BasicATOMPra 25 v Comd

: Build | Programe | Debug
CATOM

liorkspace v % [WBasicATOM MANO

(1)

2. Microcontroller Type - is the specific microcontroller such as BasicATOM Pro 24, BasicATOM 40
or BasicATOM Nano 18. Select the target module or chip you are using from the drop down menu
Auto can be used if you are unsure. If Studio is having issues detecting the microcontroller using
Auto choose the microcontroller type from drop down (2) as shown below:

%1 Basic Micro Studio

© File Wew Project Tools Debugger Help
DEE $EBE 5 B ° bascaTomero ~+ |BasicATOMPrn 26 [=] coms -
i Buid | Program | Debug Auto
) = BasicATOMPro OMNE
‘Wiarkspace v x :

CATCMP
BasicATCMPro 40
BasicATOMPro IC481-16
BasicATOMPro IC451-20
BasicATOMPro IC482-16
BasicATOMPro 1C482-20
BasicATOMPro IC641-20
BasicATOMPro IC642-20

Dmmim AT RARL~ AT 27

3. COM Port - is the communications port the device is attached to. This can be any port number
from COM 1 to 255. Choose the COM ports from the drop down (3) as shown below:

%1 Basic Micro Studio

: File Wiew Project Tools Debugger Help
D= % BB S B basicaTomn * BasicATOMPro 28
;. Build | Program [iebug

[workspace v x

25

Quick Start

First Program
The next step is to create your first program. You can do this by selecting File-> New File. Then name
your file first.bas. Choose a location to save your first program.

%1 Basic Micro Studio

| File | Wiew Project Tools Debugger Help

E_D v File 5 | R BasicATOMPro - futo - Comd -
H Mew Project
[= Qpen. .. Bt X

Close Project

Print Setup. ..

Recent Fles +

Recent Projects L4

Exit

After you have created the file first.bas, type the following example code exactly as shown below.
If you copy and paste the example code you will need to edit the quotes as they won'’t copy over

properly.

;ALL - first.bas
;My First Program

Main
serout s _out, 19600, [“Hello Word!™,13]
Goto Main

Downloading The Program

By this time you should have the microcontroller installed on the development board. Apply
power and connect the USB cable to your PC. If Basic Micro Studio has trouble detecting your
microcontroller make sure the USB drivers were installed correctly and the correct COM port is
selected.

Make sure the correct family, type and COM port has been set properly. Once you are ready click on
the “Program” button shown by the arrow below.

1 Basic Micro Studio - first.bas

: File Edit Bookmarks View Project Tools Debugger ‘Window Help

heEl! @ & | R BasicATOMPro - futo + Comd -
: Build first.bas Program Debug
|Workspace f \ - X| first.bas]
& frst.bas FALL - first.bas

;Hy First Program

Hain

serout s out, i96668, [“Hello Wordt"]
Goto HMain

26

Quick Start

If the program is correct with no syntax errors and the microcontroller is detected you should see a
message “No Errors Detected” at the bottom of the build window as shown below.

=

|.
Build
Starting Compiler...

Preparing files...

CADATA\BASICMICRO\DOCUMENTATION\MANUAL-ATOMPROAEXAMPLES\FIRST.BAS
Compiling...

Tokenizing...
Ram Memory Used[User]: 0 bytes
Ram Memory Free: 2048 bytes

Program Memory Used(Tokens): 78 bytes
Program Memory Used(Library]: 1252 bytes
Program Memory Used(Total]: 1330 bytes

Program Memory Free: 30414 bytes

No Errors Detected

Debug | Find 1 | Find 2 | Terminal 1 | Terminal 2 | Terminal 3 | Terminal 4 | Build

Far Help, press F1

The Download Begins

After the microcontroller is detected and your program compiles without errors, downloading will
begin and you should see the progress dialog. Downloading the program can take up to 30 seconds
on some modules. If downloading is slower than this you may not have your USB drivers installed

correctly.

Progress [33%]

Loading...

[-nnnnnnnnnnnnn] [Cancel]

27

Quick Start

Terminal Window

You have successfully written and downloaded your first program. Now its time to see what it does.
We will connect to your program using Studios built in terminal windows. After programming is
complete, at the bottom of the IDE window there are several tabs. These tabs set what control is
displayed. Click on “Terminal 1.

connect | TN ~ | 9600 ~|No Parity v|NoFlow Ct v|NoEcho |

Debug | Find 1 | Find 2 |Terminal 1 | Terminal 2 | Terminal 3 | Terminal 4 | Build

For Help, press F1

Terminal Window Setup
The next step is setting the terminal window to match the SEROUT / SERIN command parameters
you used in your program.

serout s out, 19600, [“Hello Word!””,13]

First select the COM port (1). For this example you will use the same COM port as you used in the
drop down box at the top of Studio. Next i9600 was used so our baud rate (2) should be set to 9600.
Last, set NoEcho (3).

1

(comest) Crmmm

v |No Parity v|NoFlow Ct v|NoEcho v/

€)

Debug | Find 1 | Find 2 |Terminal 1 | Terminal 2 | Terminal 3 | Terminal ¢ | Build

For Help, press F1

25

Quick Start

Terminal Window Connect
Once you have the terminal window set properly its time to connect to your program. Click the
connect button.

Debug | Find 1 | Find 2 |Terminal 1 | Terminal 2 | Terminal 3 I Terminal 4 | Build

For Help, press F1

Once the terminal window successfully connects to your program you should see “Hello World!”
displayed in the terminal window. Since our first program is a simple loop it will print “Hello World!”
forever or until you disconnect it.

[pisconnect | conu v |9600 v|Mo Parity v|NoFlow Ct v|MoEcho v/

Hello Word?
Hello UWord?
Hello UWord?
Hello Word?
Hello UWord?
Hello UWord?
Hello Uord?
Hello Word?
Hello UWord?
Hello Uord?
Hello Word?
Hello

8 |

Debug | Find 1 | Find 2 | Terminal 1 | Terminal 2 | Terminal 3 ' Terminal 4 ! Build

For Help, press F1

Congratulations
You have successfully created and downloaded your first program. Welcome to the exciting world of
microcontrollers!

29

Quick Start

Blinking LED
Now that you know how to write a program and download it, lets make something we can see.
Everyone likes a blinking LED. Connect a 390 Ohm resistor to PO. Connect an LED anode (+) to the

resistor. Connect the other side of the led cathode (-) to VSS (GND) which is marked by the small flat
spot on the LED.

P6
P7
P8
P
P
P
P
P
P
P
P
P
P

<t w0
o o

P3

O — (N
[a N a gy Y

— = = = = = = = = —

N M < n O N

N N NN NN

EEEEEN

: EEEEEN
<l EEEEEEEEEEEEEEEEEEEEEEEEENEC
| EEEEEEEEEEEEEEEEEEEEEENEO
EEN EEEEEEEEEEEEEEEEEEEENE-

ol
hal |

ol ENEEEEEEEEEN
cHEEEEEEEEEEEEN

EEEEEEEEEEEEEEENO
EEEEEEEEEEEEEENEC

cENNEEEEEEEEEEE S EEEEEEEEEEEEENO
cENNEEEEEEEEEEEEEEEEEEEEEEEENENEC
cENNENEEEEEEEE NN EEEEEEEEEEEEEG

CANmTwonr®wo 2RIV NPOIANRIRRRNA AR

ITTTTTT T T LT]

The Program
Type or copy the below example exactly as shown. You can copy and paste the program into Studio.

Once you have entered the program save it as blink.bas. Then download it to the BasicATOM as
outline in the previous section of this manual.

;ALL - blink.bas
;My blinking LED program

Main
High PO
Pause 300
Low PO
Pause 300
Goto Main

Congratulations
You have successfully blinked your first LED! You can now officially consider yourself a programmer.

30

Variables

Variables

31

Structure - Variables

Variables

Variables are used to store values used in your program. The values stored typically will change
during program run time. What was stored at the start of your program in a given variable can change
by the time your program stops running.

To use a variable it must be defined in your program so Basic Micro Studio knows to set aside the
required amount of space in RAM. The ATOM line is 32 bit so variables can be from 1 bit to 32bits in
capacity. Typically most microcontroller systems are limited to 16bits capacity.

When creating a variable you specify what type of variable you will need in your program. You can
define as many variables as you want. The only limit is the amount of RAM available which varies for
each ATOM type.

Variable Types

Type Bits Value Range
Bit 1 1or0
Nib 4 0to 15
Byte 8 0 to 255
SByte 8 -128 to +127
Word 16 0 to 65,535
SWord 32 -32,768 to +32,767
Long 32 0 to 4,294,967,295
SlLong 32 -2,147,483,647 to +2,147,483,648
Float 32 + 2.0 EXP-126 to * 2.0 EXP 127
Pointer 32 0 to 4,294,967,295
Location

Variables should be defined in the beginning of your program if you want access to the variable
anywhere in your program. Where variable are defined dictates where those variables can be used.
Variables must be defined before they can be used.

Signed

Variables can be signed. This keeps track if the variable is a negative or positive number. This is
useful in many applications. A simple example would be controlling a DC motor. A negative number
can indicate one direction of spin, 0 can be stop and a positive value can be the opposite direction of
spin using one variable. Signed variables are created using Sbyte, Sword and Slong

32

Structure - Variables

Defining Variables
Variables are defined with the statement VAR. You can declare your new variable as any type found
in the Variable Types table. To define a variable use the syntax shown below.

Syntax:
VariableName VAR Type

Examples:

Red VAR Byte
Tick VAR Nib
Switch var Bit
Totals var Sword

Variable Names

Variables names must start with a letter but can be any combination of letters and numbers including
some symbols that are not in the reserved word list. You can name your variables almost anything.
However its a good idea to name them something useful that you will remember and understand for
debugging your program. Variable names can be up to 1,024 characters long. The only names you
can not use for your variables are reserved words. These are words used by Studio for commands or
other syntax based names (see the manual appendix for a complete reserved word list).

Example:
MotorSensor VAR Word

Aliases

Variables can be aliased. This is useful when creating a program for a processor with limited RAM
(i.e. BasicATOM). Using an alias can help your code be more human readable without wasting RAM.
If you have a variable that is only used in one particular section of code you can assign an alias
pointing to a variable that was defined earlier.

Example:

MotorDirection VAR Word
MaxCCSpeed VAR MotorDirection
MaxCCWSpeed VAR MotorDirection._byteO

Variable Modifiers

Variable modifiers can be used when only part of a variables value is needed. Most communication

formats such as serial or 12C are byte driven. If you have a word sized variable and you are sending
data to such a device, you will need to send one byte at a time of the word variable. The word value
can be split using an alias with a modifier as shown below.

Example

MyData VAR Word)
Flrsthte VAR MyData.HighByte
SecondByte VAR MyData.LowByte

33

Structure - Variables

Variable Modifier Type

Modifier Description

LowBit Returns the low bit of a variable (least significant bit).

HighBit Returns the high bit of a variable (most significant bit).

Bitn Returns the Nth bit of a variable. From 0 to 31 depending on variable size.
LowNib Returns the low nibble (4 bits) of a variable (least significant nib).

HighNib Returns the high nibble (4 bits) of a variable (most significant nib).

Nibn Returns the Nth nib (4 bits) of a variable. From 0 to 7 depending on variable size.
LowByte Returns the low byte (8 bits) of a variable (least significant byte).

HighByte Returns the high byte (8 bits) of a variable (most significant byte).

Byten Returns the Nth byte of a variable. From 0 to 3 depending on variable size.
SByten Returns the Nth signed byte of a variable. From 0 to 3 depending on variable size.
LowWord Returns the low word (8 bits) of a variable (least significant word).

HighWord Returns the high word (8 bits) of a variable (most significant word)

Wordn Returns the Nth word of a variable. 0 to 1 depending on variable size.

SWordn Returns the Nth signed word of a variable. 0 to 1 depending on variable size.

Variable Arrays

Variable arrays can be used to store several values using one variable name. A good use of variable
arrays would be taking multiple readings from a temperature sensor and storing the samples in a
variable named Temperature. The reads can later be averaged for a more accurate temperature.
Studio only supports one dimensional arrays.

Example:
Temperature VAR Byte(5)

The example above creates 5 byte sized RAM locations for the variable temperature. Each location
is indexed and referenced by using a numerical value. The range is based on the array size that was
defined. In this case the array size is 5. So an index value of 0 to 4 can be used.

Example:
Temperature(0) = 255 ;loads first position
Temperature(l) = 255 ;loads second position
Temperature(2) = 255 ;loads third position
Temperature(3) = 255 ;loads fourth position
Temperature(4) = 255 ;loads fifth position

Temp = Temperature(0) ;Loads value from first position in the array

A common use of variable arrays is to store strings of ASCIl based characters. This can be used to
send an entire sentence of text to a byte driven device such as a computer terminal window using the
STR command modifier shown later.

34

Out of Range

When declaring variables, careful consideration should be given to the maximum value it will store. If
a byte sized variable is declared but the result of some function is word sized then data will be lost.
Basic Micro Studio has no way of knowing these possible conditions existing within your program.
This situation has added some grey hair more times than most programmers will admit. So beware.
Typically a beginner programmer will declare every variable as large as they can. While this sounds
good in theory, in practice you'll run out of RAM space quickly. Plus it makes for an inefficient
programming style.

35

Constants

Constants

36

Structure - Constants

Constants

Constants are values defined that will never change. The assigned value is store in program
memory and can not be changed. Constants are set during compile time by Studio. Constants are
a convenient way to give a name to a numeric value. They are typically used to make a program
more human readable. There are two types of constants. Normal constants defined using CON and
a floating point constant defined by FCON. You can use almost any name for a constant, except
reserved words (see manual appendix).

Example:

LimitTravel CON 255
MaxSpeed FCON 6.50

Constant Tables

Tables are similar to arrays except tables only store constant values. You can store large strings

of text in a constant table. Each position is accessed like arrays using an index number. Values
assigned to a table are stored in program memory and can not be changed during program run
time. A common use for constant tables is building interactive menu systems. If the user selects n
reply with a string from table n. Constant tables are restricted to word boundaries if you have an odd
number of bytes in a byte table an extra byte is added for padding automatically.

Example:

Sentence ByteTable “Hello World!”

The above example bytetable Sentence contains the string Hello World!. Each character including the
space is a byte in the table. Sentence contains 12 bytes. To access the bytes you would use an index

value of 0 to 11.

Example:

Temp VAR Byte
Sentence ByteTable “Hello World!”

Temp = Sentence(0)

The variable Temp now is equal to the ASCII value H since index 0 is the first byte in the defined

table.

Table Types
ByteTable Each table index point is byte sized (8 bits).
SByteTable Each table index point is sbyte sized(signed 8 bits).
WordTable Each table index point is word sized (16 bits).
SWordTable Each table index point is sword sized(signed 16 bits).
LongTable Each table index point is long sized (32 bits).
SLongTable Each table index point is slong sized (32 bits).
FloatTable Each table index point is floating point sized (32 bits).

37

Pins and Ports

Pins and Ports

35

Structure - Pins and Ports

Pins and Ports

Pins and ports is how your program interfaces with the outside world. Pins can be read, set as high or
set as low. In some cases pins are what is known as open drain which can be a low or floating only,
but not driven high.

Pins are accessed individually or by ports which are typically 8 pin groups. Pin names are treated
as constants. However pins can be accessed like variables using pin variable names. Ports are
accessed and handle just like variables.

Pin Constants

Pin names are defined with a “P”. The “P” stands for Pin followed by a pin number. The amount of
pins and their names will vary depending on the processor you are using. The first 8 pins of a
BasicATOM are:

Pin names are only limited by the number of accessible pins on the processor you are using. Pin
names are normally used as an argument in commands. A simple example would be:

High PO
Low P1

The high command will set PO high, which is I/O Pin 0 of the processor you are using. It is important
to note pin names are constants. An example of this is shown below. Temp which is a variable would
be made to equal the value of the PO constant:

Temp = PO

All pin names are defined in sequence starting at PO and ending at the highest pin name. This allows
pin names to be used to intiialize a for/next loop.

Temp var byte

for Temp = PO to P31
toggle Temp

next

Pin Variables

Since pin names are constants they can’t be used to read the state of a pin directly. Instead we use
pin variables. Pin variables are important when your program needs to know something about the
outside world. They can be used to determine the state of a pin or port:

Temp = INO
Temp = OUTO

INO and OUTO are pin variables. They both do the same thing. Both are defined to make reading your
code easier. Using either IN or OUT will read the current state of the specific pin, assuming the pin is
an input. Temp will either equal 0 or 1 depending on the pin state when its read. All pins start off as
inputs during power up. However If a pin was last used by a command that set the pin to an output
state the above expression would not work with out first using a DIR statement(or INPUT command)
to set the pin back to being an input. The following table is a complete list of all the available pin and

39

Structure - Pins and Ports

port variable names. Using the variable names, individual pins can be accessed or up to 32 pins
can be accessed at one time. You will need to check the data sheet for the processor you are using
to determine how many pins are user accessible. Not all the pin or port variables will work on every
processor, the limitation being the amount of available pins.

Pin and Port IN/OUT Variable Names

Variable Names Variable Size Bits Affected Pins
INLO,OUTLO Long 32 PO - P31
INL1, OUTL1 Long 32 P32 - P63
INWO,0UTWO Word 16 PO - P15
INW1,0UTW1 Word 16 P16 - P31
INW2,0UTW?2 Word 16 P32 - P47
INW3,0UTW3 Word 16 P48 - P63
INBO,OUTBO Byte 8 PO - P7
INB1,0UTB1 Byte 8 P8 - P15
INB2,0UTB2 Byte 8 P16 - P23
INB3,0UTB3 Byte 8 P24 - P31
INB4,0UTB4 Byte 8 P32 - P39
INB5,0UTB5 Byte 8 P40 - P47
INB6,0UTB6 Byte 8 P48 - P55
INB7,0UTB7 Byte 8 P56 - P63
INNO,OUTNO Nib 4 PO - P3
INN1,0UTN1 Nib 4 P4 - P7
INN2,0UTN2 Nib 4 P8 - P11
INN3,0UTN3 Nib 4 P12 - P15
INN4,OUTN4 Nib 4 P16 - P19
INN5,0UTN5 Nib 4 P20 - P23
INN6,OUTNG Nib 4 P24 - P27
INN7,0UTN7 Nib 4 P28 - P31
INN8,OUTN8 Nib 4 P32 - P35
INN9,OUTN9 Nib 4 P36 - P39
INNA,OUTNA Nib 4 P40 - P43
INNB,OUTNB Nib 4 P44 - P47
INNC,OUTNC Nib 4 P48 - P51
INND,OUTND Nib 4 P52 - P55
INNE,OUTNE Nib 4 P56 - P59
INNF,OUTNF Nib 4 P60 - P63
INO..IN63 Bit 1 Any
OUTO0..0UT63 Bit 1 Any

40

Structure - Pins and Ports

Direction Variables

The DIR variables are used to set pins and ports to inputs or outputs. Setting the bits of the direction
variables sets the specified pins as inputs or outputs. Special attention must be paid to what module
type you are using when utilizing the DIR variables. On the Nano and BasicATOM modules 0
represents an output state. The BasicATOM Pro is reverse where a 0 represents an input. The below
table can be used to determine what zero means to the particular processor you are using.

Input Output

Processor Qutput

Nano8

Nano18

Nano28

Nano40

BasicATOM 24-M
BasicATOM 28-M
BasicATOM 40-M
BasicATOM Pro One-M
BasicATOM Pro 24-M
BasicATOM Pro 28-M
BasicATOM Pro 40-M

S|l |lalalO|lO|lO|lO|O|O| O

o|lo|lo|lo|la|la|la|lalala|~

All pins and ports are set as inputs by default on power up. When a pin is used in a command like
High, the pin direction is set automatically. The pin is then left in that state unless otherwise specified
in the command when it finishes.

In the below example the value of Temp will be incorrect:

High PO
Temp = INO

This is due to the High command being an output command, the pin being left in an output state. So
it can not be read as an input until its changed to an input. To fix this we use a DIR variable to change
the pin to an input. The below program would now function correctly:

High PO
DIRO = O
Temp |

Nésets pin as an input on BasicATOM Pro modules

41

Structure - Pins and Ports

Pin and Port DIR Variables Names

Variable Names Variable Size Bits Affected Pins
DIRLO Long 32 PO - P31
DIRL1 Long 32 P32 - P63
DIRWO Word 16 PO - P15
DIRW1 Word 16 P16 - P31
DIRW2 Word 16 P32 - P47
DIRW3 Word 16 P48 - P63
DIRBO Byte 8 PO - P7
DIRB1 Byte 8 P8 - P15
DIRB2 Byte 8 P16 - P23
DIRB3 Byte 8 P24 - P31
DIRB4 Byte 8 P32 - P39
DIRB5 Byte 8 P40 - P47
DIRB6 Byte 8 P48 - P55
DIRB7 Byte 8 P56 - P63
DIRNO Nib 4 PO - P3
DIRN1 Nib 4 P4 - P7
DIRN2 Nib 4 P8 - P11
DIRN3 Nib 4 P12 - P15
DIRN4 Nib 4 P16 - P19
DIRN5 Nib 4 P20 - P23
DIRN6 Nib 4 P24 - P27
DIRN7 Nib 4 P28 - P31
DIRNS8 Nib 4 P32 - P35
DIRN9 Nib 4 P36 - P39
DIRNA Nib 4 P40 - P43
DIRNB Nib 4 P44 - P47
DIRNC Nib 4 P48 - P51
DIRND Nib 4 P52 - P55
DIRNE Nib 4 P56 - P59
DIRNF Nib 4 P60 - P63
DIRO0..DIR63 Bit 1 Any
DIRO0..DIR63 Bit 1 Any

You can use binary, decimal or hexadecimal values to represent what pins are being set as inputs or
outputs. The following statements all mean the same things. Based on the BasicATOM Pro 28-M PO
will be set to an output:

DIRO = %0 ;Binary
DIRO = O ;Decimal
DIRO = 0x00 ;Hexadecimal

42

Math

Math

43

Structure - Math

Math

As with most BASIC implementations, Mbasic includes a full complement of math and comparison
functions. MBasic supports 32 bit integer math, both signed and unsigned. It also supports floating
point math, signed or unsigned. A signed value denotes whether the resulting value is positive or
negative.

Floating point math can be processor intensive. This should be remembered any time making a

decision when creating programs with math functions. There are numerous cases where floating
point math is required. Hence the flexibility of the BasicATOM when compared to other available
processors.

Number Bases

Although all calculations are handled internally in binary, users can refer to numbers as decimal,
hexadecimal or binary, whichever is most convenient for the programmer. For example, the number
2349 can be referred to as:

2349 Decimal
0x092D Hexadecimal
%100100101101 Binary

Leading zeros are not required for hex or binary numbers, but may be used if desired. When using
signed integers (sbyte, sword, slong) it's probably a good idea to stick to decimal notation to avoid
confusion.

Math and Operators

Operators are what makes math work, by performing a function. An example of an operator would
be + (Addition), - (Subtraction), * (Multiplication) and / (Division). All these symbols represent an
operation to be performed. However the operators need something to do, so we add operands or
better known as arguments. Math arguments are the values used in an expression.

In the following section you'll see the word “expression” used many times. This refers to something
like 1+2 which is called an expression. The expression 1+2 has one operator (+) and two
arguments(1 and 2) or operands.

44

Structure - Math

Operators
- Changes the value of an expression from positive to negative. Also used in subtraction.
ABS Returns the absolute value of an expression.
SIN Returns the integer sine of an expression.
COSs Returns the integer cosine of an expression.
DCD Returns 2 to the power of an expression.
NCD Returns the smallest power of 2 that is greater than the expression.
SQR Returns the integer square root.
BIN2BCD Converts expression from binary to packed binary coded decimal format.
BCD2BIN Converts packed binary coded decimal format to a binary value.
RANDOM Returns a random 32 bit number generated from a seed value.
- Subtraction. Also used to sign a value.
+ Addition.
* Multiplication, returns the low 32bits of a multiplication result.
/ Division.
> Returns high 32 bits of a multiplication result.
i Fractional multiplication.
1 Remainder of Division.
MAX limits the expression to a maximum value
MIN limits the expression to a minimum value
DIG returns the specified digits value
REV reverses the order of the specified number of bits in an expression
<< Shift left by specified amount.
>> Shift right by specified amount.
& Binary math AND.
| Binary math OR.
A Binary math XOR.
&/ Binary math AND NOT.
|/ Binary math OR NOT.
A Binary math XOR NOT.
= Is equal to.
<> Is not equal to.
< Is less than.
> Is greater than.
<= Is less than or equal to.
>= Is greater than or equal to.
AND Logical AND.
OR Logical OR.
XOR Logical XOR.
NOT Logical NOT.
TOINT Convert a Floating Point value to a Integer
TOFLOAT Convert an Integer value to a Floating Point
FSQRT Floating Point Square Root(BasicATOMPro Only)

45

Structure - Math

Operator Description

FSIN Floating Point Sine (BasicATOMPro Only)

FCOS Floating Point Cosine (BasicATOMPro Only)

FTAN Floating Point Tangent (BasicATOMPro Only)

FASIN Floating Point ArcSine (BasicATOMPro Only)

FACOS Floating Point ArcCosine (BasicATOMPro Only)

FATAN Floating Point Arc Tangent (BasicATOMPro Only)

FSINH Floating Point Hyperbolic Sine (BasicATOMPro Only)
FCOSH Floating Point Hyperbolic Cosine (BasicATOMPro Only)
FTANH Floating Point Hyperbolic Tangent (BasicATOMPro Only)
FATANH Floating Point Hyperbolic ArcTangent (BasicATOMPro Only)
FLN Floating Point Natural Log (BasicATOMPro Only)

FEXP Floating Point Exponent (BasicATOMPro Only)

Operator Precedence
All math functions have a precedence order. This simply means each math function in an expression
is calculated based on its precedence not based on the order in which it appears in the expression.

This even holds true for math as it was taught in school. However the precedence of order may differ.

To solve the following equation 2+2*5/10 = 3 the ATOM would start with multiplication first since it

has the higher precedence order. 2*5 will be calculated first which equals 10, then the divide 10/
10 equals 1, then the addition of 2 which equals 3. The 2 was added last since it had the lowest

precedence.

The multiply and divide operators have equal precedence, and both are higher precedence than
addition and subtraction. Now you can change the order in which the math is performed by using
parenthesis. This will force a specific order. Using parentheses, the following expression ((2+2)*5) /10
would yield a result of 2.

Precedence Table

Order Operation

1st NOT, ABS, SIN, COS, - (NEG), DCD, NCD, SQR, RANDOM, TOINT, TOFLOAT, BIN2BCD, BCD-
2BIN, ~(Binary NOT), !(Binary NOT), NOT(Logical NOT), FSQRT, FSIN, FCOS, FTAN, FASIN,
FACOS, FATAN, FSINH, FCOSH, FTANH, FATANH, FLN, FEXP

2nd Rev, Dig

3rd MAX, MIN

4th N/

5th +, -

6th <<, >>

7th <, <=, =,>=, > <>

8th & |, N &L LN

9th And, Or, Xor

46

Structure - Math

- (Negative)

ABS

Signs an expression(integer or floating point) as its negative value.

Example

Temp var Byte
Result var Byte
Temp = 1

Result = Temp + -1

Temp is first is set to equal 1. Then -1 is added. -1 is a signed integer. So Result now equals 0. Since
1 added to -1 equals 0.

The Absolute Value converts a signed number to its absolute value. The absolute value of a number
is the value that represents its difference from 0. The absolute value of -4 is 4. If the number is
positive the result will always be the same number returned:

temp
temp

abs(-1234)
abs(1234)

The result will always be 1234 since the difference of 0 from -1234 is 1234.

47

Structure - Math

SIN, COS

For use with integer arithmetic, some modifications to the way sine and cosine work have been made.
For example, in floating point math, the expression:

ans = sin(angle)

where angle is 1 radian, would return a value of 0.841... for ans. In fact, the sine of an angle must
always be a fractional value between -1 and 1. MBasic can’t deal with fractional values for integer
math so SIN and COS are made to work with integers.

Since we are dealing with binary integers, we divide the circle into 256 (rather than 360) parts. This
means that a right angle is expressed as 64 units, rather than 90 degrees. When working with Studio
angular units give you a precision of about 1.4 degrees.

The result of the SIN or COS function is a signed number in the range of —127 to +128. This number
divided by 128 gives the fractional value of SIN or COS.

Example
In most “real world” applications, the angle does not need to be in degrees, nor the result be in
decimal form. The following example shows a possible use of SIN with Studio values.

If a sensor returns the angle of a robotic control arm as a number from 0 to 64, where 0 is parallel and
64 is a right angle. We want to take action based on the sine of the angle.

limit var byte
angle var byte
loop
code that inputs the value of *“angle™)
imit = sin angle
it limit > 24 then first
if limit > 48 then second
) goto loop
first)
code to warn of excessive angle
goto loop
second
code to shut down equipment
etc. ..

This will warn the operator if the arm angle exceeds approximately 8 units (11.25 degrees) and shut down
the equipment if the arm angle exceeds approximately 16 units (22.5 degrees). Most control examples
don’t need to work in actual degrees or decimal values of sine or cosine. To find the sine of a 60 degree
angle, first convert the angle to MBasic units by multiplying by 256 and dividing by 360. For example:

angle = 60 * 256 / 360

will result in a value of 42. (It should actually be 42.667, which rounds to 43, but with integer
arithmetic the decimal fraction is ignored, and the integer is not rounded up.) Then find the sine of this
angle:

ans = sin angle
This will give a result of 109. Dividing this value by 128 will give the decimal value of 0.851 (compared

to the correct floating point value which should be 0.866). You can’t directly get the decimal value by
doing this division within Studio Basic (you would get a result of 0). However, you could first multiply

45

Structure - Math

DCD

NCD

by 1000, then divide by 128 to get 851 as your result.

Similar to the “exp” function in some other BASIC implementations. Returns 2 to the power DCD.

Example
If the value of “num” is 7, then the following statement will return a value of 2 to the power of 7, or
128.

answer = dcd num

Since the returned value increases exponentially, make sure your target variable (“answer” in this
case) is correctly defined to accommodate the largest value anticipated. If the target variable is too
small, only the low order bits of the result will be stored.

This function returns the smallest power of 2 that is greater than the argument.

Example
If the value of “num” is 51, the following statement will return the value of 6. Since 225 = 32 and 26 =
64, 6 is the smallest power of 2 greater than 51.

answer = ncd num

49

Structure - Math

SQOR (Square Root)

Returns the integer portion of the square root of the argument. Increased precision can be obtained
by multiplying the argument by an even square of 10, such as 100 or 10000.

Example 1
If the value of “num” is 64, the following statement will return the value of 8 (which is the square root
of 64).

answer = sqr num

Example 2
If the value of “num” is 220, the following statement will return the value 14, which is the integer
portion of 14.832..., the square root of 220.

answer = sqr num

Example 3
If more precision is required, multiply the argument by 100 or 10000. Using the example where “num”
= 220 a value 148 is returned, which is 10 times the square root of 220.

answer = sqr (num * 100)

Alternately,

answer = sqr (num * 10000)

will return the value 1483, which is 100 times the square root of 220.

50

Structure - Math

BIN2BCD, BCD2BIN

These commands let you convert back and forth between binary and “packed” binary coded decimal
(BCD). ABCD number is one in which each decimal digit is represented by a 4 bit binary number
(from 0 to 9). Packed BCD packs two 4 bit decimal digits in a single byte of memory.

For example, the decimal number 93 is represented in binary as:

Values 128 | 64 32 16 8 4 2 1
Binairy 0 1 0 1 1 1 0 1

The same number is expressed in packed BCD as:

Values 8 4 2 1 8 4 2 1
Binairy 1 0 0 1 0 0 1 1
Example

Assuming that “ans” is a byte variable and “num” has the decimal value of 93, the statement

answer = bin2bcd num

will set ans to a binary value of 10010011 (which is 93 in packed BCD).

RANDOM

Generates a 32 bit (Long) random number from the seed value. As with most random number
generators, the random numbers generated will follow a predictable pattern, and each time the
program is run the random number sequence will be the same if the seed value is the same. The
below code snippet will return a pseudo random set of numbers by re-seeding from the results:

seed var long

123456
random seed

seed
seed

There are steps that can be taken to avoid repeating random number sequences. This is typically
done using hardware based features. One common method is using an internal hardware timer for
the seed value and asking the user to press a button at the beginning of a game. Each time the
button is pressed the timer value will likely be different. Another method is reading an A/D pin that is
left floating and near a noisy signal trace.

51

Structure - Math

- (Subtraction)

Subtract a value (integer or floating point) from another value. The resulting number is not signed
unless a signed variable is used. An example of subtraction:

time var byte
time = 100
time = time - 1

The variable time will now equal 99 since we subtracted 1 from 100.

+ (Addition)

Add one value (integer or floating point) to another value. The resulting number is not signed unless a
signed variable is used. An example of addition:

time var byte
time = 100
time

time + 1

The variable time will now equal 101 since we added 1 to 100.

* (Multiplication)
Multiply one value(integer or floating point) by another value. The resulting number is not signed
unless a signed variable is used. An example of addition:
time var byte

time = 100
time = time * 1

The variable time will now equal 100 since we multiplied 100 x 1.

52

Structure - Math

/ (Division)
Divide one value (integer or floating point) by another value. Integer division discards fractional

results. For example:

result = 76/7

will set the variable “result” to a value of 10. (The actual decimal result should be 10.857, but the
decimal part is discarded, rounding is not done.) If your application requires fractional results you can
use floating point numbers or the following solution.

Use a floating point variable instead to get the full precision.

result var float
result = 76.0/7.0

Alternatively when using integer variables multiply the dividend by 10, 100, 1000 etc. before dividing.
The result will gain extra digits of precision but must be interpreted correctly. Using the previous
example we can gain three digits of precision as follows. This is known as fixed point division:

temp = dividend * 1000 ;dividend is now 76000
result = temp/7

Which sets “result” to a value of 10857.

** (High Multiplication)

If two long variables or constants are multiplied, the result may exceed 32 bits. Normally, the multiply
function will return the least significant (lowest) 32 bits. The ** function will, instead, return the most
significant 32 bits.

time = 80000 ** 80000 ; result returns high 32 bits

The value of time would be equal to Ox1 which is the high 32 bits of the result 6,400,000,000.

53

Structure - Math

*/ (Fractional Multiplication)

Fractional multiplication will multiply by a number with a fractional part. The multiplier must be a long
value, and it is handled in a special fashion. The high 16 bits are the integer portion of the multiplier,
the low 16 bits are the fractional part (expressed as a fraction of 65536). The result, of course, will be
an integer; any fractional part is discarded (not rounded).

Example
Let us say we want to multiply the number 346 x 2.5. The multiplier must be constructed as follows:
The high 16 bits will have a value of 2. We can do this with:

mult_highword = 2

The low 16 bits will have a value of half of 65535, or 32782, so:

mult.lowword = 32782

Then we do the fractional multiply:

a = 346 */ mult

which will give “a@” the value 865. A similar procedure will let you multiply by any fraction; simply
express that fraction with a denominator of 65535 as closely as possible.

Notice that half of 65535 is actually 32782.5; a number we can’t enter as the fractional part. This
means that multiplication by exactly %2 is not possible. However, the difference is so small that it has
no effect on the actual outcome of the integer result.// (mod)

The mod function (short for “modulo”) returns the remainder after an integer division. So, for example,
13 modulo 5 is 3 (the remainder after dividing 13 by 5).

The mod function can be used to determine if a number is odd or even, as shown here:

X var word
y var word
(code that sets the value of Xx)
y = x//2 o
1T y=0 goto even ;zero_indicates an even number
if y=1 goto odd ;one indicates an odd number
even
(more code)
odd

(more code)

Similarly, the mod function can be used to determine if a number is divisible by any other number.

54

Structure - Math

MAX

MIN

DIG

REV

The MAX function returns the smaller of two expressions(integer or floating point). For example:

X var word

y var word

code to set value of y
X =y max 13

The example will set x to the value of y or 13, whichever is smaller. Think of this as “x equals y up to a
maximum value of 13”.

The MIN function returns the larger of two expressions(integer or floating point). For example:

X var word

y var word

code to_set value of y
X =y min 9

The example will set y to the value of x or 9, whichever is larger. Think of this as “x equals y down to a
minimum value of 9”.

The DIG (digit) function is used to isolate a single digit of a decimal number. For example:

X var word

y var byte)
(code to set y) ;say the result is_y=17458))
X =y dig 4 ;gives the 4th digit of y, which is 7

Digits are counted from the right, starting with 1. The DIG function will work with numbers in decimal
format only. If you need to find a specific digit in a hex or binary number, use a variable modifier.

The REV function works directly in binary, but the results may be expressed in any form. It is used to
“reverse” the order of the bits of a number. Example:

X var byte

y var byte

X = %101110 ;this 1s decimal 46

y = X rev 3 ;gives g a value of %101011

55

Structure - Math

<< (Shift Left)

The Shift Left operator shifts all the bits of a value to the left by a specified amount. Shifting left is the
same as multiplying the value by 2 to the nth power. Bits shifted off the left end are lost. Zeros are
added to the right for vacant bits. The example program will display the value of time before and after
shifting left by 4. The results will be displayed in binary:

time var byte

serout sout, 19600, [bin time]
time = time << 4))
serout sout, 19600, [bin time]

Important: The sign bit is not preserved so this function should not be used with signed numbers.

>> (Shift Right)

The Shift Right operator shifts all the bits of a value to the right by a specified amount. Shifting right is
the same as dividing the value by 2 to the nth power. Bits shifted off the right end are lost. Zeros are
added to the left for vacant bits. The example program will display the value of time before and after
shifting right by 4. The results will be displayed in binary:

time var byte

serout sout, 19600, [bin time]
time = time >> 4))
serout sout, 19600, [bin time]

Important: The sign bit is not preserved so this function should not normally be used with signed
numbers.

56

Structure - Math

& (AND)

The & function is a binary operator. It sets the result to 1 if both matching bits are 1’s. Or to 0 if either
or both bits are 0’s.

1&1=1
180=0
0&1=0
0&0=0
Value1 o |1 [o |1 1 1 0 1
Value2 1 o fo |4 0 0 1 1
Result o [o [o |1 0 0 0 1

One useful function for AND is to “mask” certain bits of a number. For example, if we are interested
only in the low 4 bits of a number, and want to ignore the high 4 bits, we could & the number with
00001111 as shown here:

Value1 0 1 0 1 1 1 0 1
Value2 0 0 0 0 1 1 1 1
Result 0 0 0 0 1 1 0 1

As you can see, the high 4 bits are now all set to 0’s, regardless of their original state, but the low 4
bits retain their original state.

| (OR)

The | function is a binary operator. It set the bit to 1 If either or both of the matching bits are 1. Or to 0
if both bits are 0’s.

111=1
110=1
0]1=1
0/]0=0
Value1 0 1 0 1 1 1 0 1
Value2 1 0 0 1 0 0 1 1
Result 1 1 0 1 1 1 1 1

57

Structure - Math

N (Exclusive OR)

The * function is a binary operator. It sets the resulting bits to a 1 if either, but not both, of the
matching bits are 1. Or to 0 otherwise.

121=0
170=1
0r1=1
020=0

Value1 0 1 0 1 1 1 0 1
Value2 1 0 0 1 0 0 1 1
Result 1 1 0 0 1 1 1 0

&/ (AND NOT)

The AND NOT function is a binary operator. It compares the bits of two values. It sets the result bits to
1 if neither bit is set(0) or to a 1 for all other cases.

1&1=1
1&0=1
0&1=1
0&0=0

Value1 0 1 0 1 1 1 0 1
Value2 1 0 0 1 0 0 1 1
Result 1 1 1 0 1 1 1 0

I/ (OR NOT)

The OR NOT function is a binary operator. It compares the bits of two values bit by bit and sets the
result to a 1 if neither bit is a 1. All other conditions will return a 0.

11/1=0
11/0=0
0)/1=0
01/0=1

Value1 0 1 0 1 1 1 0 1
Value2 1 0 0 1 0 0 1
Result 0 0 1 0 0 0 0 0

58

Structure - Math

Al (XOR NOT)

The XOR NOT function is a binary operator, It compares two values bit by bit and sets the result to a
1 if neither bit is a 0 but not both. All other conditions will return a 0.

1M1=1
170=0
0r1=0
0r0=1

Value1 0 1 0 1 1 1 0 1
Value2 1 0 0 1 0 0 1 1
Result 0 0 1 1 0 0 0 1

= (Equal)
The Equal (=) is a logic operator and lets something be equal.
temp = 10

The example code sets temp to 10.

<> (NOT Equal To)
The NOT Equal (<>) is a logic operator and compares if something is not equal to some value.
if temp <> 10 then

The conditional statement will check to see if temp is not equal to 10. If the value of temp is lower or
greater the comparison will be true.

< (Less Than)
The Less Than (<) is a logic operator and compares if something is less than some value.
if temp < 10 then

The conditional statement will check to see if temp is less than 10. If the value of temp is lower the
comparison is true. Any value equal to or over 10 will be false.

59

Structure - Math

> (Greater Than)

The Greater Than (>) is a logic operator and compares if something is greater than some value.

if temp > 10 then

The conditional statement will check to see if temp is greater than 10. If the value of temp is higher
the comparison is true. Any value from 0 to 10 will be false.<= (Less Than or Equal To)

The Less Than or Equal To (<=) is a logic operator and compares if something is less than or equal to
some value.

if temp <= 10 then

The conditional statement will check to see if temp is less than or equal to 10. If the value of temp is
less than 10 or equal to 10 the comparison is true. Any value from 11 and up is false.

>= (Greater Than or Equal To)

AND

The Greater Than or Equal To (>=) is a logic operator and compares if something is greater than or
equal to some value.

if temp >= 10 then

The conditional statement will check to see if temp is greater than or equal to 10. If the value of temp
is greater than 10 or equal to 10 the comparison is true. Any value from 0 to 9 is false.

The AND operator is a logic comparison operator. It compares two conditions to make a single true or
false statement. The AND operator will return a true only if both conditions are true. If one condition is
false then a false is returned. The truth table demonstrates all combinations:

Condition 1 Condition 2 Result
True True True
True False False
False True False
False False False

The AND operator is used in decision making commands such as IF.. THEN, DO..WHILE and so on. It
differs from the & operator which is used in binary math functions. Example of the AND operator:

iT minute

10 AND hour

1 then alarm

The conditional statement will check to see if both expressions are true before returning a true and
jumping to the alarm label. If one of the expressions is not true a false is returned and the label is

skipped. The IF..THEN only jumps to the label if the statement is true.

6O

Structure - Math

OR

XOR

The OR operator is a logic comparison operator. It compares two conditions to make a single true or
false statement. The OR operator will return a true if one or both conditions are true. If both conditions
are false then a false is returned. The truth table demonstrates all combinations:

Condition 1 Condition 2 Result
True True True
True False True
False True True
False False False

The OR operator is used in decision making commands such as IF.. THEN, DO..WHILE and so on. It
differs from the | operator which is used in binary math functions. Example of the OR operator:

if hour = 12 OR minute = 30 then ding

The conditional statement will check to see if either expressions is true before returning a true and
jumping to the ding label. If both of the expressions are false the label is skipped. The IF.. THEN only
jumps to the label if the statement is true.

The XOR operator is a logic comparison operator. It compares two conditions to make a single true
or false statement. The XOR operator will return a true if one but not both conditions are true. If both
conditions are true or false then a false is returned. The truth table demonstrates all combinations:

Condition 1 Condition 2 Result
True True False
True False True
False True True
False False False

The XOR operator is used in decision making commands such as IF.. THEN, DO..WHILE and so on. It
differs from the * operator which is used in binary math functions. Example of the XOR operator:

if hour > 5 XOR hour = 5 then QuitTime

The conditional statement will check to see if either expressions is true before returning a true and
jumping to the quittime label. If both of the expressions are false or true the label is skipped. The IF..
THEN only jumps to the label if the statement is true.

61

Structure - Math

NOT

The NOT operator is a logic operator. It inverts a condition. When used, true becomes false and false
becomes true. The truth table demonstrates all combinations:

Condition Result

True False

False True

The NOT operator is used in decision making commands such as IF..THEN, DO..WHILE and so on.
Example of the NOT operator:

if hour = 5 then Quit Time
if NOT hour < 5 then Over_Time

If hour is not equal to 5 the first conditional statement will skip Quit_Time. In the second conditional
statement if hour is not less than 5 it jumps to the label Over_Time since the NOT operator inverted
the result of the condition. The IF..THEN only jumps to the label if the statement is true.

62

Structure - Math

Floating Point Math

MBasic includes floating point math functions. These functions can be processor intensive. The time
it takes will vary based on the processor used. The AtomPro40m being the fastest since it has built
in 32 bit math hardware. This should be remembered any time making a decision when creating
programs with floating point math functions.

Floating Point Operators

Operator Description

TOINT Convert a Floating Point value to a Integer

TOFLOAT Convert an Integer value to a Floating Point

FSQRT Floating Point Square Root(BasicATOMPro Only)

FSIN Floating Point Sine (BasicATOMPro Only)

FCOS Floating Point Cosine (BasicATOMPro Only)

FTAN Floating Point Tangent (BasicATOMPro Only)

FASIN Floating Point ArcSine (BasicATOMPro Only)

FACOS Floating Point ArcCosine (BasicATOMPro Only)

FATAN Floating Point Arc Tangent (BasicATOMPro Only)

FSINH Floating Point Hyperbolic Sine (BasicATOMPro Only)

FCOSH Floating Point Hyperbolic Cosine (BasicATOMPro Only)

FTANH Floating Point Hyperbolic Tangent (BasicATOMPro Only)

FATANH Floating Point Hyperbolic ArcTangent (BasicATOMPro Only)

FLN Floating Point Natural Log (BasicATOMPro Only)

FEXP Floating Point Exponent (BasicATOMPro Only)
TOINT

The TOINT operator explicitly converts a Floating Point value into an integer value. The decimal point
of the Floating Point number is truncated.

myfloat var float
myint var long

myfloat = 10.0 ;myfloat now equals 10.0

myfloat m¥ﬂoat * 123.123 ;myfloat now equals 1231.23
myint = TOINT myfloat ;myint now equals 1231

serout s _out, 19600, [“result = “,sdec myint,13]

TOFLOAT

The TOFLOAT operator explicitly converts an Integer value into a Floating Point value.

myint var long
myfloat var float

myint = 10
myfloat = TOFLOAT myint / 100.0 ;myfloat now equals 0.1
serout s _out, 19600, [“result = “,real myfloat,13]

63

Structure - Math

FSQRT

Returns the floating point square root of the argument. A square root is the number, that when
multiplied by itself will equal the original argument.

If the value of “num” is 2, the following statement will return the value of 1.4142.

myfloat var float

myfloat = FSQRT 2.0
serout s _out, 19600, [“result = “,real myfloat,13]

FSIN

The FSIN operator calculates the Floating Point Sine of an angle in radians. FSIN gives the ratio of
the length of the side opposite of the angle to the length of the hypotenuse in a right triangle.

myangle var float
mysin var float

myangle = 3.14159/2.0 ;myangle now e?uals P1/2 degrees in radians
mysin = FSIN mgangle ;mysin now equals 1.0
serout s out, 19600, [“mysin = “,real mysin,13]

FCOS

The FCOS operator calculates the Floating Point Cosine of an angle in radians. FCOS gives the ratio
of the length of the side adjacent the angle to the length of the hypotenuse in a right triangle.

myangle var float
mycos var float

myangle = 0.0 ;myangle now equals O degrees in radians
mycos = FCOS mgangle ;mycos now equals 1.0
serout s _out, 19600, [“mycos = “,real mycos,13]

FTAN

The FTAN operator calculates the Floating Point Tangent of an angle in radians. FTAN gives the ratio
of the length of the side opposite the angle to the length of the side adjacent to the angle in a right
triangle

myangle fcon 3.14159/4 ;myangle is 45 degrees in radians
myadj fcon 100.0
myopp var float

;This calcualtion finds the triangles opposite side length
;for a right trlan%Ie with angle of 45 degrees and
;adjacent_side of 100.)

myopp = FTAN m angle * myadj ;myopp now equals 100.0
serout s_out, 19600, [“myopp = “,real myopp,13]

o4

Structure - Math

FASIN

The FASIN operator calculates the Floating Point Arc Sine of a value. FASIN returns the angle in

radians given the ratio of the length of the size opposite the angle and the length of the hypotenuse in
a right triangle.

mysin fcon 1.0
myangle var float

myangle = FASIN mysin ;myfloat equals P1/2
serout s _out, 19600, [“myangle = ““,real myangle,13]

FACOS

The FACOS operator calculates the Floating Point Arc Cosine of a value. FACOS returns the angle in
radians given the ratio of the length of the size adjacent the angle and the length of the hypotenuse in
a right triangle.

mycos fcon 0.0
myangle var float

myangle = FACOS mycos ;myfloat equals O
serout s_out, 19600, [“myangle = “,real myangle,13]

FATAN

The FATAN operator calculates the Floating Point Arc Tangent of a value. FATAN returns the angle in

radians given the ratio of the length of the size opposite the angle and the length of the side adjacent
to the angle in a right triangle.

mytan fcon 1.0
myangle var float

myangle = FATAN mytan ; myfloat equals P1/4
serout s _out, 19600, [“myangle = “,real myangle,13]

FLN

The FLN operator calculates the Floating Point Natural Log of a value. The natural log is used to
calculate the time it takes for compound growth to reach the specified amount. For example FLN
20.08 qill equal approximately 3. This means it takes 3 growth cycles(the amount of time it takes to
grow 100%) to reach 20.08 times the original amount.

result var float

result = FLN 2.0 ;result now equals 0.69315
serout s out, 19600, [“result = “,real result,13]

65

Structure - Math

FEXP

The FEXP operator calculates the Floating Point Natural Exponent of a value. The natural exponent
calculates the inverse of the natural log. Given time how much will something grow. FEXP 3 will
equal approximately 20.08 times the original quantity.

result var float

result = FEXP _0.693115 ;result now equals 2.0
serout s _out, 19600, [“result = “,real result,13]

Hyperbolic Functions
The hyperbiolic trigonometric functions are found in many scientifici calculations, including in

Calculus, Special Relativity and calculating the Catenary of a hanging wire. Describing their uses in
detail is beyond the scope of this manual.

FSINH

The FSINH operator calculates the Floating Point Hyperbolic Sine of the value.

param var float
result var float

param = FLN 2.0
result = FSINH param

serout s out, 19600, [*“The hyperbolic sine of *“,real param,” is “,real
result,13]

FCOSH

The FCOSH operator calculates the Floating Point Hyperbolic Cosine of the value.

param var float
result var float

param = FLN 2.0
result = FCOSH param

serout s out, 19600, [“The hyperbolic cosine of “,real param,” is “,real
result,13]

66

Structure - Math

FTANH

The FTANH operator calculates the Floating Point Hyperbolic Tangent of the value.

param var float
result var float

param = FLN 2.0
result = FTANH param

serout s out, 19600, [“The hyperbolic tangent of “,real param,” is “,real
result”,13]

FATANH

The FATANH operator calculates the Floating Point Hyperbolic Arc Tangent of the value.

param var float
result var float

param = 0.6
result = FEXP_(FATANH ﬁaram))
serout s out,i9600,[“The result is “,real result,13]

67

Modifiers

Modifiers

215

Structure - Modifiers

Modifiers

In MBasic all values are received and stored as binary. Modifiers were created for formatting the
data used in commands that have input or output (SERIN / SEROUT). The modifiers are useful for
formatting data being printed to a terminal window. All characters are represented in ASCII. Modifiers
format the ASCII values to display properly based on the modifier used.

An example of a command modifier is formatting a decimal value. The decimal value 32 would output
to a terminal window as a space character. Instead, to display the actual decimal value of the variable
you would use the DEC modifier:

Temp Var Byte
Temp = 32

serout s _out, 19600, [DEC TEMP]

The code snippet above would display the value of temp which is set to 32. If the DEC modifier wasn’t
used a space character(“ “) would be displayed instead.

Several modifiers are input only modifiers such as WAIT which would cause an input command to
wait until the received data matches a specified string.

Some modifiers have variants. In SBIN the “S” stands for signed. Where in IBIN the “I” represents
the indicator. The indicator is the symbol used to indicate the numeric type such as binary (%) or
hexadecimal ($).

Modifiers can be used with the following commands:

Output Modifiers Input Modifiers

DEBUG DEBUGIN
[2COUT 12CIN
OowouT OWIN
SEROUT SERIN
HSEROUT HSERIN
LCDWRITE LCDREAD
WRITEDM READDM
DTMFOUT

DTMFOUT2

Output modifiers can also be used to modify array variables:

string var byte(100)

string = “Hello World” ;string(0-10)="Hello World”
string = dec 1234567 ;string(0-6)="1234567"
string = ihex 0x3456 ;string(0-4)="$3456"

69

Structure - Modifiers

Modifiers
Name Input Output Description
DEC X X Decimal.
SDEC X X Signed decimal.
HEX X X Hexadecimal.
SHEX X X Signed hexadecimal.
IHEX X X Indicated ($) hexadecimal.
ISHEX X X Signed and indicated ($) hexadecimal.
BIN X X Binary.
SBIN X X Signed binary.
IBIN X X Indicated (%) binary.
ISBIN X X Indicated (%) and signed binary.
REP X Repeat character n times.
REAL X X Floating point number with decimal point.
STR X X Read or write specified amount of characters and store in an array.
SKIP X Skip specified amount of characters.
WAIT X Wait for specified amount of characters.
WAITSTR X Compares specified amount of characters to array.

70

Structure - Modifiers

DEC
DEC{#max} expression{\#min}

#max: optional maximum number of digits to send
#min: optional minimum number of digits to send

The DEC modifier when used in an output command will convert a stored values to ASCII characters.
The example will format the value of temp so it prints out the number in a terminal window. The output
would display 1234.

temp var word
temp = 1234

serout s _out, 19600, [DEC temp] ;prints “1234~

DEC(#max) variable
#max: optional maximum number of digits to receive

The DEC modifier for input commands will format incoming ASCII characters into a numeric value.

The example will read in ASCII characters that represent decimal numbers up to 9 characters long

and store the converted value in a variable. Until a numeral is received(eg “0” to “9”) any incoming

characters are ignored. Once a numeral has been received any character not a numeral will cause
the conversion to finish before 9 characters have been received.

temp var word

serin s_out, 19600, [DEC temp]

71

Structure - Modifiers

SDEC
SDEC{#max} expression{\#min}

#max: optional maximum number of digits to send
#min: optional minimum number of digits to send

The DEC modifier when used in an output command will convert a stored values to ASCII characters.
The example will format the value of temp so it prints out the number in a terminal window. The output
would display 1234.

temp var sword
temp = -1234

serout s out, 19600, [SDEC temp] ;prints “-1234~

SDEC(#max) variable
#max: optional maximum number of digits to receive

The SDEC modifier for input commands will format incoming ASCII characters into a numeric value.
The example will read in ASCII characters that represent decimal numbers up to 9 characters long
and store the converted value in a variable. Until a negative sign or numeral is received(eg “0” to
“9”) any incoming characters are ignored. Once a numeral has been received any character not a
numeral will cause the conversion to finish before 9 characters have been received.

temp var sword

serin s_out, 19600, [SDEC temp]

72

Structure - Modifiers

HEX

HEX{#max} expression{\#min}

#max: optional maximum number of digits to send
#min: optional minimum number of digits to send

The HEX modifier, in output commands, converts stored values to ASCII characters. The example will
format the value of temp so it prints out the number in a terminal window. The output would display
12ab.

temp var word
temp = Ox12ab

serout s out, 19600, [HEX temp] ;prints “0xl2ab”
HEX(#max) variable
#max: optional maximum number of digits to receive

The HEX modifier, for input commands, formats incoming ASCII characters into a numeric value. The
example will read in ASCII characters that represent hexidecimal numbers up to 8 characters long
and store the converted value in a variable. Until a numeral is received(eg “0” to “9” or “a” to “f’) any
incoming characters are ignored. Once a numeral has been received any character not a numeral
will cause the conversion to finish before 8 characters have been received.

temp var word

serin s_out, 19600, [HEX temp]

73

Structure - Modifiers

SHEX
SHEX{#max} expression{\#min}

#max: optional maximum number of digits to send
#min: optional minimum number of digits to send

The SHEX modifier, in output commands, converts stored values to ASCII characters. The example
will format the value of temp so it prints out the number in a terminal window. The output would
display -12AB.

temp var word
temp = -0x12ab

serout s out, 19600, [SHEX temp] ;prints “-12ab”
SHEX(#max) variable
#max: optional maximum number of digits to receive

The SHEX modifier, for input commands, formats incoming ASCII characters into a numeric value.
The example will read in ASCII characters that represent hexidecimal numbers up to 8 characters
long and store the converted value in a variable. Until a negative sign or numeral is received(eg “0”

to “9” or “a” to “f") any incoming characters are ignored. Once a numeral has been received any
character not a numeral will cause the conversion to finish before 8 characters have been received.

temp var sword

serin s_out, 19600, [SHEX temp]

74

Structure - Modifiers

IHEX
IHEX{#max} expression{\#min}

#max: optional maximum number of digits to send
#min: optional minimum number of digits to send

The IHEX modifier, in output commands, converts stored values to ASCII characters. The example
will format the value of temp so it prints out the number in a terminal window. The output would
display $12ab.

temp var word
temp = Ox12ab

serout s _out, 19600, [SHEX temp] ;prints “$12ab”
IHEX(#max) variable
#max: optional maximum number of digits to receive

The IHEX modifier, for input commands, formats incoming ASCII characters into a numeric value.
The example will read in ASCII characters that represent hexidecimal numbers up to 8 characters
long and store the converted value in a variable. Until the indicator is received, "$”, any incoming
characters are ignored. Once the indicator has been received any character not a numeral will cause
the conversion to finish before 8 characters have been received.

temp var word

serin s_out, 19600, [IHEX temp]

75

Structure - Modifiers

ISHEX
ISHEX{#max} expression{\#min}

#max: optional maximum number of digits to send
#min: optional minimum number of digits to send

The ISHEX modifier, in output commands, converts stored values to ASCII characters. The example
will format the value of temp so it prints out the number in a terminal window. The output would
display $-12ab.

temp var sword
temp = -0x12ab

serout s _out, 19600, [ISHEX temp] ;prints “$-12ab”
ISHEX(#max) variable
#max: optional maximum number of digits to receive

The ISHEX maodifier, for input commands, formats incoming ASCII characters into a numeric value.
The example will read in ASCII characters that represent hexidecimal numbers up to 8 characters
long and store the converted value in a variable. Until the indicator, “$”, is received any incoming
characters are ignored. Once the indicator has been received any character not a numeral will cause
the conversion to finish before 8 characters have been received.

temp var sword

serin s_out, 19600, [ISHEX temp]

76

Structure - Modifiers

BIN

BIN{#max} expression{\#min}

#max: optional maximum number of digits to send
#min: optional minimum number of digits to send

The BIN modifier, in output commands, converts stored values to ASCII characters. The example will
format the value of temp so it prints out the number in a terminal window. The output would display
1100.

temp var word
temp = 0OxO0C

serout s _out, 19600, [HEX temp] ;prints “1100~
BIN(#max) variable
#max: optional maximum number of digits to receive

The BIN modifier, for input commands, formats incoming ASCII characters into a numeric value. The
example will read in ASCII characters that represent hexidecimal numbers up to 8 characters long
and store the converted value in a variable. Until a numeral is received(eg “0” to “1”) any incoming
characters are ignored. Once a numeral has been received any character not a numeral will cause
the conversion to finish before 8 characters have been received.

temp var word

serin s_out, 19600, [BIN temp]

77

Structure - Modifiers

SBIN
SBIN{#max} expression{\#min}

#max: optional maximum number of digits to send
#min: optional minimum number of digits to send

The SBIN modifier, in output commands, converts stored values to ASCII characters. The example
will format the value of temp so it prints out the number in a terminal window. The output would
display 1100.

temp var sword
temp = -0x0C

serout s out, 19600, [HEX temp] ;prints “-1100”
SBIN(#max) variable
#max: optional maximum number of digits to receive

The SBIN moadifier, for input commands, formats incoming ASCII characters into a numeric value.
The example will read in ASCII characters that represent hexidecimal numbers up to 8 characters
long and store the converted value in a variable. Until a negative sign or numeral is received(eg “0”
to “1”) any incoming characters are ignored. Once a numeral has been received any character not a
numeral will cause the conversion to finish before 8 characters have been received.

temp var sword

serin s_out, 19600, [SBIN temp]

75

Structure - Modifiers

IBIN

IBIN{#max} expression{\#min}

#max: optional maximum number of digits to send
#min: optional minimum number of digits to send

The IBIN modifier, in output commands, converts stored values to ASCII characters. The example will
format the value of temp so it prints out the number in a terminal window. The output would display
%1100.

temp var word
temp = 0OxO0C

serout s out, 19600, [IBIN temp] ;prints “%1100”
IBIN(#max) variable
#max: optional maximum number of digits to receive

The IBIN modifier, for input commands, formats incoming ASCII characters into a numeric value. The
example will read in ASCII characters that represent hexidecimal numbers up to 8 characters long
and store the converted value in a variable. Until the indicator is received any incoming characters are
ignored. Once the indicator has been received any character not a numeral will cause the conversion
to finish before 8 characters have been received.

temp var word

serin s_out, 19600, [IBIN temp]

79

Structure - Modifiers

ISBIN

REP

ISBIN{#max} expression{\#min}

#max: optional maximum number of digits to send
#min: optional minimum number of digits to send

The ISBIN modifier, in output commands, converts stored values to ASCII characters. The example
will format the value of temp so it prints out the number in a terminal window. The output would
display %-1100.

temp var sword
temp = -0x0C

serout s out, 19600, [ISBIN temp] ;prints “%-1100"
ISBIN(#max) variable
#max: optional maximum number of digits to receive

The ISBIN modifier, for input commands, formats incoming ASCII characters into a numeric value.
The example will read in ASCII characters that represent hexidecimal numbers up to 8 characters
long and store the converted value in a variable. Until the indicator is received any incoming
characters are ignored. Once the indicator has been received any character not a numeral will cause
the conversion to finish before 8 characters have been received.

temp var sword

serin s_out, 19600, [ISBIN temp]

The REP modifier will output the character n a specified number of times. The example will repeat the
specified character “A” 10 times.

serout s out, 19600, [REP “A”\10] ;prints A 10 times

&0

Structure - Modifiers

REAL
REAL{#maxint} expression{\#maxdec}

#maxint: optional maximum number of integer digits to send
#maxdec: optional maximum number of decimal point digits to send

The REAL modifier, in output commands, converts stored values to ASCII characters. The example
will format the value of temp so it prints out the number in a terminal window. The output would
display 3.14159.

temp var float
temp = 3.14159

serout s out, 19600, [REAL temp] ;prints “3.14159”
REAL variable

The REAL modifier, for input commands, formats incoming ASCII characters into a numeric value.
The example will read in ASCII characters that represent floating point numbers and store the
converted value in a variable. Until a numeral is received any incoming characters are ignored. Once
a numeral has been received any character not a numeral will cause the conversion to finish before 8
characters have been received.

temp var float
serin s_out, 19600, [REAL temp]

&1

Structure - Modifiers

STR
STR array\length{\eol}
The STR modifier, in output commands, will output Length amount of characters from specified
constant or variable array until the end of the array or until an optional specified Eol character is
found.
temp var b¥te(20
temp = “Hello world”,0
serout s _out, 19600, [str temp\20\0] ;output “Hello world”
STR array\length{\eol}
The STR modifier, in input commands, will receive Length number of characters and store them in
the variable array specified. An optional end of line(Eol) character can be specified to tell STR to stop
receiving characters.
temp var byte(20)
serin s_in,i9600, [str temp\20\13] ; receive upto 20 characters
SKIP
The SKIP modifier will skip n amount of characters.
serin s_in, 19600, [SKIP 10, temp] ;skip the first 10 values received
WAIT
The WAIT modifier will wait for a specific constant string of characters.
serin s_in, 19600, [WAIT(“Hello World”)] ;wait for “Hello world”
WAITSTR

WAITSTR array\length{\eol}

The WAITSTR modifier will wait for Length amount of characters comparing them to an array. Syntax
is the same as the STR input modifier. The end of line character is compared against the existing
array data. If it matches the current array character being compared the wait is finished.

temp var byt
temp = “he

serin s_in, 19600, [waitstr temp\10\13] ;waits until it receives “hello”

&2

Command Reference

Command Reference

&3

Commands

Command Reference

The following section outlines the syntax and general use of each command supported in MBasic.
Not all commands support all BasicATOM processors. Each command indicates what processors are
supported with a simple “Supported” list. The supported processor list use abbreviations to indicate
each processor family.

Supported List Abbreviations

Abbreviation Description

BA All BasicATOM modules and Nano X chips.
BAN Only standard Nano chips.
BAP BasicATOM Pro One, 24m and 28m modules.
BAP40 BasicATOM Pro 40m and ARC32.

Syntax

The syntax for each command is given in the command reference section. In addition Basic Micro
Studio has built in syntax help. As a command is typed Basic Micro Studio will show the syntax for
that command as its being typed.

&4

Commands

ADIN

Syntax
adin pin, result

* Pin - is a variable or constant that specifies the pin to use for the analog reading. Must be an
analog capable pin.

* Result - is a word(or larger) sized variable used to store the analog results.

Supported
* BA - Supported.
* BAN - Supported.
* BAP - Supported.
* BAP40 - Supported.

Description

The ADIN command directly accesses the built-in analog hardware. The analog hardware can
read any analog voltage from 0 to 5VDC. This will give 1024 positions. GND = 0 and 5V = 1023.
Depending on the module type you are using the speed at which analog samples are performed
varies. Each processors analog pins differ. See the table below.

Analog Capable Pins

Processor Pins

Nano 18 P6 to P11

Nano 28 PO to P5 and P16 to P20
Nano 40 PO to P5 and P24 to P31
Atom 24m AXO0, AX1, AX3

Atom 28m PO to P5 and P16 to P19
Atom 40m PO to P5 and P24 to P31
AtomPro One PO to P3

AtomPro 24m PO to P3

AtomPro 28m PO to P3 and P16 to P19
AtomPro 40m PO to P3 and P28 to P31
Notes

1. The ADIN conversion must complete before the program will process the next command. The AD
conversion typically takes around 8 micro seconds.

2. The ADIN command only works with pins that are analog capable.

3. The analog pins for each module or Nano are listed in its corresponding data sheet and differ from
module to module.

&5

Commands

Examples

Run the example and connect to the terminal window at 9600. The ADIN command will read the
analog pin PO (AtomPro 28m) and print the result to the screen. Connect a potentiometer to PO as
shown in the schematic. You can connect any analog source and run the sample program.

;The analog pin number will change depending on module type
Pot var word

Main
adin PO, pot ;read analog pin PO, load result into POT
serout s out, 19600, [0, “Analog Value = *, dec pot]
Pause 50

Goto Main

Schematic

The schematic is setup to use a potentiometer of 10K. Any value can be used. R2 the 100 ohm
resistor is to prevent from shorting ground to power. Depending on what processor you are using you
may need to change PO to a different analog pin.

VCC

R2
100

R1

10K

GND

Schematic

This second schematic is basically the same as the first but shows an actually pot and how it would
be wired up.R2 the 100 ohm resistor is to prevent from shorting ground to power. Depending on what
processor you are using you may need to change PO to a different analog pin.

56

Commands

ADIN16

Syntax
adin16 pin, result

* Pin - is a constant, variable or expression of an analog capable pin. See table from ADIN.
» Result - is a word(or larger) sized variable where the analog to digital sample will be store.

Supported
* BA - Supported.
* BAN - Supported.
* BAP - Supported.
* BAP40 - Supported.

Description

ADIN16 was create to generate a more accurate reading from the analog to digital hardware. The
typical A/D reading has a value range of 0 to 1024. ADIN16 drastically improves this by over sampling
which results in a higher resolution A/D range. It sets up the A/D converter and stores the sum of 64
conversions in a result variable. The result variable will contain a 16 bit sum of all the conversions.
This value can be used as a 16 bit resolution A/D reading which will be some what noisy. The noise
can be cleaned up by right shifting the value to get to lower resolutions but with better readings than a
standard A/D conversion value.

Notes

1. 64 readings are taken which increase the time need to produce a result. The A/D is a separate
piece of hardware which functions outside of the main MCU. ADIN16 will have little affect on the
processing speed as the multiple conversions happen very fast relative to the entire instruction
time.

Example
The following example will load the result into the variable temp then right shift it 4 times. This gives
an A/D range of 0 to 4095 which is 4x better than a standard 0 to 1023 reading.

temp var word

main
adinl6 pO,temp _ _ _ _
temp = temp>>4 ;temp will hold a 12bit decimated A/D conversion

serout s out, 19600, [“Conversion = “,dec temp,13]
pause 100
goto main

Schematic
See ADIN.

&7

Commands

BRANCH

Syntax
branch index, [label1, label2, label3, ..., labelN]

* Index - is a variable, constant or expression. It is used to reference a label in a list. The index is 0
based.

e Label - is a list of constant labels that are jump points in a program

Supported
* BA - Supported.
* BAN - Supported.
* BAP - Supported.
* BAP40 - Supported.

Description

The BRANCH command will jump to a label defined within the brackets. The label used for the jump
is determined by the pointer index. The only limit to the amount of the labels within the brackets are
program memory.

Notes

1. Labels are read from left to right with label1 as position 0.

2. If alabel is specified in the BRANCH command and not used in the program, an error will result
during compiling.

58

Commands

Examples

Connect to the following program with the terminal window at 9600 baud. Enter a value from 0 to 4.
The program will jump to the label specified by the value typed in. The BRANCH command is a great
way to build a long conditional jump list based on some value range. User interactive menu systems
are one possibility.

;ALL - all_branch.bas

Index var word

Main

Pause 1500))
serout s_out, 19600, [0, “Where should 1 jump to O to 4 ? -> “]
Serin s_in, 19600, [dec Index]

branch index, [labelO, labell, label2, label3, label4]

Goto Main

LabelO

serout s_out, 19600, [13, “Label 0]
Goto Main

Labell

serout s_out, 19600, [13, “Label 1’7]
Goto Main

Label2

serout s_out, 19600, [13, “Label 2’7]
Goto Main

Label3

serout s_out, 19600, [13, “Label 3]
Goto Main

Label4

serout s_out, 19600, [13, “Label 4]
Goto Main

&9

Commands

BUTTON

Syntax
button pin, downstate, delay, rate, workspace, targetstate, label

e Pin - is a variable or constant that specifies the pin to be used. The pin specified will be set to an
input when the command runs.

« Downstate - is a variable or constant that specifies what state the pin should be to considered as
a button press. High = 1 or Low = 0.

» Delay - is a byte sized variable or constant (0-255) that specifies the number of loops to execute
before enter the auto repeat function (rate). Delay is the debounce function of the BUTTON com
mand. If delay = 0 the command will run once with and rate is ignored. If delay = 255 the com
mand will repeat 255 times but rate is ignored. Any value in between 1 - 254 will execute both
debounce and rate.

* Rate - is a byte sized variable or constant (0-255) that specifies the number of loops to execute
after delay has expired. This is the auto repeat function and only executes after delay has decre
mented to 0.

» Workspace - is a byte sized variable (0-255) that is an internal counter that tracks how many
times the command has been run. Internally its set by delay, then rate and is decremented each
loop through the command. A unique workspace variable must be created for each BUTTON
command used in the program.

» Targetstate - is a byte sized variable or constant and determines what state the button must be in
before the BUTTON command will jump to the label. 1 = pressed and 0 = not pressed. If target
state is set to 1 (Pressed), the command will jump to the label if the button is pressed. Otherwise
the next line of code is executed.

e Label - is where the command will jump to based on targetstate. If targetstate = 0 (Not Pressed)
then the jump to label is made when no button press is detected. If targetstate = 1 (Pressed) then
the jump to label is made when a button press is detected.

Supported
* BA - Supported. X samples per second.
* BAN - Supported. X samples per second.
* BAP - Supported. X samples per second.
* BAP40 - Supported. X samples per second.

Description

The BUTTON command when ran will first look at downstate and determine if Pin must be high (1) or
low (0) to consider a button is in a pressed state. After a button is determined pressed, the command
loads the delay value into the workspace variable. Any time a mechanical switch or button is pressed
there is a tiny vibration within the device. This vibration will appear to a microcontroller I/O pin as
several on / off cycles. To eliminate this unwanted noise we debounce the press using a delay. Once
the delay value it loaded into workspace the command will look at the targetstate and either jump to
the label or move onto the next line of code. This is the first time the command has run.

90

Commands

The BUTTON command must be nested inside of a loop to perform properly. This is typically
accomplished with a GOTO statement. If a button press has occurred, the BUTTON command will
then look at the state of pin again. With each pass through decrementing workspace. This cycle is
repeated for as many times as delay was set to. At the end of this cycle, if pin is still consider pressed
the button command acts on a pressed state.

Notes

1. The BUTTON command is non blocking. Each run through it will either jump to label or allow pro
gram execution to continue on the next line.

2. The BUTTON command automatically sets a pin to an input and will leave it in that state.

Examples

Connect to the following program with the terminal window set to 9600 baud. The BUTTON command
is setup for an active low (Downstate = 0) on PO and P1. Connect an active low button as shown in
the below schematics. If a button press is detected on PO or P1 its results are printed to the screen as
“P0 = Pressed” or “P1 = Pressed”. Once a button press is no longer detect the program returns to the
main loop.

Targetstate is set to 1 (Pressed). When the command does not detect a press state the next line of
code is ran. Which in this case is a SEROUT command used to clear [0] the terminal screen. If a
button press is detect the BUTTON command will jump to label (pressed1, pressed2). Once at label,
which button was pressed is printed to the screen.

;ALL - all_button.bas

Workspacel var byte
Workspace2 var byte

;watch PO and P1 for an active low button press.
;clear the screen if no button press is detected.
;1T button_is pressed jump to label and tell

;us about it.

Main
button P0,0,80,40,workspacel,1,pressedl
serout s out, 19600, [OR

button P1,0,80,40,workspacel,1,pressed?2
serout s out, 19600, [0?

goto main

pressedl
;button press on PO has been detected, print it to the sceen.
serout s out, 19600,[0,”PO0 = Pressed”]
pause 300

goto main

pressed2
;button press on Pl has been detected, print it to the sceen.
serout s out, 19600,[0,”P1l = Pressed”]
pause 300

goto main

91

Commands

Schematics

The first schematic is considered an active low setup. This means the pin is pulled high and the
switch is normally open. When the switch is pressed it shorts the pin to GND. The switch is now
“active”.

Active Low

S1 L
—

GND}) o— PO —www——VCC
BUTTON 10K

The second schematic is consider an active high setup. This means the pin is pulled low and the
switch is normally open. When the switch is pressed it shorts the pin to VCC. The switch is now
“active”.

Active High
- s1
GND p——w— PO) o lvce
10K BUTTON '

o2

Commands

CLEAR

Syntax
clear

Supported

* BA - Supported.

* BAN - Supported.

* BAP - Supported.

* BAP40 - Supported.

Description

The clear command sets all user memory to zeros. This includes variables and any command which
relies on user accessible memory. The CLEAR function is typically used in the beginning of a program
to set all memory to a know state. In some situations CLEAR is used in place of several statements
like variable = 0.

Notes

1. The CLEAR command will reset the buffers used in several hardware based commands such as
HSERIAL and HSERVO. If the command is issued in the middle of program execution, data held in
the buffers of these commands will be cleared to all zeros.

Examples

Connect to the following program with the terminal window set to 9600 baud. The CLEAR command
sets all variables and user memory to a known state before normal program execution begins. In
some cases if your program is randomly restarted you would want to eliminate the potential for

any random values left in user memory to interfere with normal operation. The following program
demonstrates what happens to all defined variables after a CLEAR command is issued.

;ALL - all_clear.bas

Dog var byte
Cat var byte
Mop var byte
Top var byte

Dog = 1
Cat = 2
Mop = 3
Top = 4
Main
pause 600 _ _
serout s_out, 19600, [0,”Variables before CLEAR command:]
serout s out,i9600,[13, “Dog = ““, dec dog
serout s out,i19600,[13, “Cat = “, dec cat
serout s out,i9600,[13, “Mop = “, dec mop
serout s out,i9600,|13, “Top = “, dec top
pause 1000
CLEAR
serout s_out,i9600,[13, 13, “Variables after CLEAR command:]
serout s out,i19600,[13, “Dog = ““, dec dog
serout s out,i9600,[13, “Cat = “, dec cat
serout s_out,19600,[13, “Mop = *, dec mop
serout s out,i9600,|13, “Top = “, dec top
End

93

Commands

COUNT

Syntax
count pin, time, cycles

* Pin - is a variable or constant that specifies which input pin to use. The pin is automatically set to
input mode.

* Time - is a variable, constant or expression that specifies the amount of time to count pin clock

cycles.
» Cycles - is a variable in which the total count is stored.

Supported
* BA - Supported. Minimum pulse width 3.4us.
* BAN - Supported. Minimum pulse width 8.5us.
* BAP - Supported. Minimum pulse width 1.5us.
* BAP40 - Supported. Minimum pulse width 1.5us.

Description

The COUNT command is used to count low to high transition (0-1-0). It will count a low-high-low as 1
cycle. COUNT is a blocking command and will only count the pin for the specified time. The COUNT
command can be used to calculate the speed of a motor from an optical encoder. Or it can be used to
determine lower range frequencies.

Notes

1. Each module has a different minimum resolution, see supported chart.
2. Each module has a maximum speed it can count, see supported chart.
3. Acycle is considered a low-high-low transition.

Examples

Connect to the following program with the terminal window set to 9600 baud. Pull-up PO with a 10K
resistor. Use a jumper wire with one end connected to ground. Short PO with the jumper wire. See
how many cycles you create. Each loop through the COUNT command will count for 1 second. Then
print the results to the terminal window. Repeating forever.

;ALL - all_count.bas

cycles var Word
time var Word

;lets count the Iow—hiﬂh—low transitions on PO for 1 second
;save the results to the variable cycles, then print it to
;the terminal window. Pull-up PO with a 10K resistor. Short
;PO to ground with a small wire and see how many cycles you
;can create per loop.

time = 1000
cycles = 0

Main
;lets count the low-high-low transitions for a second
count p0, time, cycles

pause 500

;lets print the results to the terminal window

serout s_out, 19600, [*“Count = *, dec cycles,13]
goto main

o4

Commands

DEBUG

Syntax

debug [{modifiers}data1,...,{modifiers}dataN]

» Data - is a variable, constant or expression of data that will be display in the debug output

window

» Modifiers - supports most all output modifiers. See Output Modifiers table below. For additional

information regarding modifiers see the Modifier section of this manual.

Supported

* BA - Supported.

* BAN - Supported.

* BAP - Supported.

* BAP40 - Supported.

Output Modifiers

Name Description

DEC Decimal.

SDEC Signed decimal.

HEX Hexadecimal.

SHEX Signed hexadecimal.

IHEX Indicated ($) hexadecimal.

ISHEX Signed and indicated ($) hexadecimal.
BIN Binary.

SBIN Signed binary.

IBIN Indicated (%) binary.

ISBIN Indicated (%) and signed binary.

REP Repeat character n times.

REAL Floating point number with decimal point.
STR Read specified amount of characters from an array.

Description

The DEBUG command is a simplified version of a SEROUT command. It works only to help debug
a program. Once the DEBUG command is used the results will be printed to the debug window only

when the target processor has been programmed using the Debug mode in Studio.

o5

Commands

Notes
1. The debug command is only included in your final code when your program is compiled using the
DEBUG function in Basic Micro Studio.

2. The debug output window expects all output to be in ASCII. If variables are output directly without
modifiers, their values will be truncated to 8bits and interpreted by the terminal window as ASCII

characters, which may give unexpected results.

3. The Debug Output window accepts terminal window formatting commands.

Terminal Window Commands

Decimal Character Command Description

0 CLS Clears the screen.

1 HOME Moves cursor home.

3 MOVE LEFT Moves cursor left.

4 MOVE RIGHT Moves cursor right.

5 MOVE UP Moves cursor up.

6 MOVE DOWN Moves cursor down.

7 BELL Make sound on PC.

8 BACK SPACE Moves cursor back and delete.

9 HANDLE TAB Add a standard tab.

10 LINEFEED Move cursor to next line.

11 CLEAR RIGHT Clear anything to the right of the cursor.

12 CLEAR DOWN Clear anything below the cursor.

13 CARRIAGE RETURN Move to the next line.
Example

The following example will out debug information to the debug window. The processor must be
programmed using the Debug function of Basic Micro Studio.

value var long
fvalue var float

main
value = value + 1
fvalue = fvalue + 0.1

debug [“Dec Value=”,dec value,” *
debug [“Hex Value=”",hex value,” “
debug [“Bin Value=”,bin value,” “
debug [“Real Value=",real fvalue,13]

goto main

96

Commands

DEBUGIN

Syntax
debugin [{modifiers}data1,...,{modifiers}dataN]

» Modifiers - supports most all input modifiers. See Input Modifiers table below. For additional
information regarding modifiers see the Modifier section of this manual.

» Data - is a variable where data sent from the debug window will be stored.

Supported
* BA - Supported.
* BAN - Supported.
* BAP - Supported.
* BAP40 - Supported.

Input Modifiers

Name Description

DEC Decimal.

SDEC Signed decimal.

HEX Hexadecimal.

SHEX Signed hexadecimal.

IHEX Indicated ($) hexadecimal.

ISHEX Signed and indicated ($) hexadecimal.

BIN Binary.

SBIN Signed binary.

IBIN Indicated (%) binary.

ISBIN Indicated (%) and signed binary.

REAL Floating point number with decimal point.

STR Read or write specified amount of characters and store in an array.
SKIP Skip specified amount of characters.

WAIT Wait for specified amount of characters.

WAITSTR Compares specified amount of characters to array.

Description

Accepts keyboard input from the Debug Output window from Basic Micro Studio. The debug window
is only available if the processor was programmed using the debug button. After a debug session is
complete the processor needs to be reprogrammed using the normal program button otherwise it will
not function properly.

Note

1. The DEBUGIN command is only included in your final code when your program is compiled using
the DEBUG function in Basic Micro Studio.

2. In the absence of modifiers DEBUGIN assigns each keystroke to a single variable.

o7

Commands

Example

The following example will send and receive data from the debug window. The processor must be
programmed using the Debug function of Basic Micro Studio.

value var long
fvalue var float

debug [“Enter the starting integer value:’"]
debugin [dec value] _

debug [“Enter the starting real value:’7]
debugin [real fvalue]

main
value = value + 1
fvalue = fvalue + 0.1

;output to Debug window using the DEC,HEX,BIN and REAL modifiers
debug [“Dec Value="",dec value,” “
debug [“Hex Value="",hex value,” “
debug [“Bin Value=",bin value,” “
debug [“Real Value=",real fvalue,13]
goto main

o8

Commands

DO - WHILE

Syntax
do

program statements
while condition

» Statements - any group of commands to be run inside the loop.
e Condition - can be a variable or expression

Supported
* BA - Supported.
* BAN - Supported.
* BAP - Supported.
* BAP40 - Supported.

Description
The DO - WHILE loop executes commands nested inside of it will some condition is true. The
condition can be any variable or expression that is tested every loop until it is false.

Notes

1. In the programming world 0 is consider false. By default DO - WHILE will test this condition. If a
stand alone variable is used for the test the loop will continue until its value equals 0.

2. DO - WHILE will always run at least once since the condition is checked last in the loop.

3. You can nest multiple DO - WHILE commands within each other. However you can not nest DO -
WHILE with a WHILE - WEND together or the compiler will get the WHILE statements confused.

Example

Connect to the following program with the terminal window set to 9600 baud. The program will
start counting up from 0 to 100. Once index reaches a value of 100 the condition is no longer true.
The less than symbol < was used for the condition and 100 is no longer less than 100 making the
condition false. Since DO - WHILE loops while a statement is true the program exits.

;ALL - all_do while.bas

Index var word

Main
Index = 0

Do

index = index + 1 } }
serout s out, 19600,[0, “Counting: “, dec index]
pause 75

While index < 100 ;repeat until index is no longer less than 100

serout s_out, 19600, [13, “My condition is no longer true."]

serout s out, 19600, [13,13, “Index = “, dec index]
serout s out, 19600, [13, “Index is no longer less than 100

End]

99

Commands

Example
Connect to the following program with the terminal window set to 9600 baud. The program will start

counting down from 100 until it equals 0. Once index = 0 the program will quit because the condition
is no longer true since 0 = false. In programming 0 is always considered false. If a condition is tested
and the results equal 0 then a false is returned.

;ALL - all_do_while2._bas

Index var word

Main
Index

Do

index = index - 1 : :
serout s out, 19600,[0, “Counting: “, dec index]
pause 75

100

While index ;repeat until index is O, which is a false expression

serout s_out, 19600, [13,13, “Index = *, dec index]
serout s_out, 19600, [13, “My condition is no longer true.’’]
- serout s_out, 19600, [13, “Index is now false’]

n

100

Commands

DTMFOUT

Syntax
dtmfout pin,{ontime,offtime,}[tone1, ..., toneN]

* Pin - is a variable, constant or expression that specifies the 1/0O pin to use. The pin will be set to
an output during tone generation. After tone generation is complete the pin will be set to an input.

¢ Ontime - is an optional variable, constant or expression that specifies the duration of each tone in
milliseconds. If not specified, default is 200 ms.

« Offtime - is an optional variable, constant or expression that specifies the length of silence after
each tone in milliseconds. If not specified, default is 50 ms.

» Tone - is a constant, variable or expression that specifies the tone to be generated. Valid value
ranges are 0 to 15. See Tone table below.

Supported
* BA - Supported.
* BAN - Supported.
* BAP - Supported.
* BAP40 - Supported.

Tone Table

Oto9 Digits 0 through 9
10 * (Star)

11 # (Pound)

12 A

13 B

14 C

15 D

Description

DTMFOUT is used to generate the standard 16 tones for phone lines. It can also be used to control
any radio device that supports DTMF tones. The tones are generated by mixing internally two sine
waves that were created mathematically. The results are then internal used to control the duty cycle
of a PWM signal. The resulting sound must be filtered to remove the digitization that is created when
the tones are generated.

Notes
1. In order for the tones to be recognized by the receiving device the output must be filtered and in
many cases amplified.

101

Commands

Schematic

There are a few ways to filter and interface devices to the processor used to create the DTMF tones.
A speaker can be driven directly. A simple filter circuit can be used. Also shown is a method for
connection the processor directly to a phone line.

Passive Low Pass Filter Direct Drive Speaker
R1 R2 C1 SPK1
1K 1K 10uF

[P0 > <_AMP+)> IIEIID—q}th———————— +
+ R
c1 c2 c2
0.1uf 0.01uf 10uF
Speaker

Phone Line Interface

R c1)
19K | .01u
T1
st o o D1
[Red>——oTo inanes
[Red »—o
|
0
Connect D2
1N4148
Transformer
GND
Example

The simple example program will dial out to Basic Micros main number using the phone line interface
circuit.

main
dtmfout 80,200,50,[8,0,0,5,3,5,9,1,6,1]
pause 1000

goto main

102

Commands

DTMFOUT?2

Syntax
dtmfout2 Lpin\Hpin,{ontime, offtime,}[tone1, ..., toneN]

e Lpin - is a variable, constant or expression that specifies one of two /O pins to used.
* Hpin - is a variable, constant or expression that specifies one of two 1/O pins to used.

* Ontime - is an optional variable, constant or expression (0 — 65535) that specifies the duration of
each tone in milliseconds. If not specified, default is 200 ms.

« Offtime - is a an optional variable, constant or expression (0 — 65535) that specifies the length of
silence after each tone in milliseconds. If not specified, default is 50 ms.

« Tone - is a constant, variable or expression that specifies the tone to be generated. Tone can be
any length. Valid value ranges are 0 to 15. See Tone table below.

Supported
* BA - Supported.
* BAN - Supported.
* BAP - Supported.
* BAP40 - Supported.

Tone Table

Oto9 Digits 0 through 9
10 * (Star)

11 # (Pound)

12 A

13 B

14 C

15 D

Description

DTMFOUT2 uses square waves instead of sine waves like DTMFOUT. This will create louder tones

that need less amplifying, but will still need to be filtered. DTMFOUT2 will generate the standard 16

tones for phone lines. It can also be used to control any radio device that supports DTMF tones. The
tones are generated by created two square waves and out putting each on a separate pin.

103

Commands

Schematics
The schematic can be used to combine the two pins into one out put without shorting each other. The
speaker can be replaced with a filter or phone line interfacing circuit.

R2
390

.m R1 C1
10uF SPK1
390 +
[Po—w——
N
C2 —/—
0.1uf
GND Speaker

Example
The simple example program will dial out to Basic Micros main number using the phone interface
circuit.

main
dtmfout2 pO\p1l,200,50,[8,0,0,5,3,5,9,1,6,1]
pause 1000

goto main

104

Commands

END

Syntax
end

Supported
* BA - supported
* BAN - supported
* BAP - supported
* BAP40 - supported

Description

END stops program execution until a reset occurs. The processor is put in a low power mode. 1/O
pins will not remain in their last state. Use STOP instead of END if you need the 1/Os to be held in
their last state at the end of your program.

Example
The following example will only run once. The program will only restart if reset is pressed or the power
is cycled.

value var long

serout s_out, 19600, [“This program just ends’,13]
segout s _out, 19600, [“Press reset to see it again.”,13]
en

105

Commands

EXCEPTION

Syntax
exception labe

* |label - is the label to continue execution from.

Supported
* BA - Supported.
* BAN - Supported.
* BAP - Supported.
* BAP40 - Supported.

Description

Since Mbasic allows nested GOSUB...RETURN commands in some cases you may need to return to
a specific label and clear the last GOSUB call. The EXCEPTION command will exit and return to the
label specified, in doing so it will clear all return addresses from the stack.

Notes
1. Any RETURN data in your GOSUB loop will be lost.

Examples
The following example will print to the terminal window at 9600 baud. The EXCEPTION command is
used to exit the second nested GOSUB and return to the label main

Mode var byte :
Serout s out, 19600, [“Starting”,13]

Main _ .

Serout s_out, 19600, [“Main™,13]

Mode = mode + 1

Gosub mysubl

Serout s_out, 19600, [“Returned from MySubl™,13]
Goto main

Mysubl1 _ .
Serout s out, 19600, [“Entering MySubl”,13]
Gosub mysub2
Serout s out, 19600, [“Returned from MySub2”,13]
Return

Mysub2 _ .
Serout s_out, 19600, [“Entering MySub2”,13]
I f(mode .bit0)then _ _
Serout_s_out, 19600, [“Exception back to Main,13]
Exception main

Endif

Return

See Also:
GOSuUB
RETURN

106

Commands

FATANZ2

Syntax
fatan2 xval\yval,variable

« Xval - is a variable, constant or expression that specifies the X coordinate in radians
e Yval - is a variable, constant or expression that specifies the Y coordinate in radians

» Results - is a variable the result will be stored in. This variable should be defined as a floating
point variable.

Supported
* BA - Not Supported
* BAN - Not Supported
* BAP - Supported
* BAP40 - Supported

Description
FATANZ calculates the four quadrant ArcTangent of the specified X and Y values given. FATANZ2 can

be used to calculate the angle in +/- 180 degrees based on an X /Y coordinate. All results are given
in radians. This function is typically used when calculating Inverse Kinematics.

Example

The example calculates the solution for the graph shown. Where X = 1/2 and Y= V3/2 the result of
FATANZ2 would be 1.0471. To get the exact degree you would then take result (1.0471 x 180) / m =60 °.

result var float

Main
fatan2 0.886\0.5,result
serout s out, 19600, [real result,13]
ause 100

goto Main

atan2(v3, 1) = w3

(1, V3)
atan2(1, 0) = w2
0,1)

L8

from this side is -

\T}le limit of atan2

(0,-1)
Source: ATAN2 Wikipedia

107

Commands

FOR...NEXT

Syntax

for countVal = startVal to finishVal {step increment}
...code...

next

CountVal - a variable used to store the current count

StartVal - the starting value to count from

FinishVal - a value to count up or down to
* Increment - the value to increment the variable by through each loop

Supported
* BA - Supported.
* BAN - Supported.
* BAP - Supported.
* BAP40 - Supported.

Description

Repeats a block of instructions and increments a variable counter with a value specified each time
through the loop. The FOR...NEXT loop will exit when the count value is no longer between start and
finish.

Notes

1. When no step increment is defined the default increment value is 1.

2. When the increment is positive the start must be less than or equal to finish or the FOR..NEXT
loop will be skipped entirely.

3. If the increment is negative the start value must be greater then or equal to finish or the FOR...
NEXT loop will be skipped entirely.

4. If variable is modified by the instructions in the FOR...NEXT block the loop can be forced to exit
early.

5. You can safely jujmp out of a FOR...NEXT loop.

1085

Commands

Example

The below example will print the results to a terminal window at 9600 baud. It will count up from 0 to 9
then exit.

value var long

main
for value = 0 to 9
pause = 1000

serout s out, 19600, ["Value=",dec value,13]
next

end

Example

The below example will print the results to a terminal window at 9600 baud. It will count down from 0
to 9 then exit.

value var long

main
for value = 9 to O step -1
pause = 1000 _
serout s out, 19600, [""Value=",dec value,13]
next
end
Example

The below example will print the results to a terminal window at 9600 baud. It will count up from 0 to
54 using 5 as the increment then exit.

value var long

main

for value = 0 to 54 step 5

pause = 1000 _

serout s out, 19600, [""Value=",dec value,13]
neét
en

109

Commands

FREQOUT

Syntax
freqout pin, duration, freq1{,freq2}

e Pin - is a variable, constant or expression that specifies the I/O pin to be used. This pin will be set
to output mode during tone generation and left in that state after output is completed.

e Duration - is a variable, constant or expression that specifies the duration of the output tone in
milliseconds.

* Freql - is a variable, constant or expression that specifies the frequency in Hz of the first tone
which can be between 0 — 32767Hz.

* Freg2 - is an optional variable, constant or expression that specifies the frequency in Hz of the
second tone which can be between 0 — 32767Hz.

Supported
* BA - Supported.
* BAN - Supported.
* BAP - Supported.
* BAP40 - Supported.

Description

This command generates one or two tones that are output on a single 1/0O pin. The signal generated is
a pulse width modulated signal. This command can be used to create music, tones or general output
signals. The maximum supported range is limited to what is practical. There aren’t many speakers or
piezo devices on the market that will work well outside of 30Khz. Which is why MBasic is limited to a
high of 32Khz.

Notes

1. The tones are generated mathematically and output as a pulse width modulated (PWM) signal.
The signal must be converted to a sine wave (or a pair of sine waves) by passing it through an
integrator which is a low pass filter.

Example
The code snippet will generate a 1000Hz tone for 5 seconds on P1.

freqout pl, 5000, 1000

Now let’s generate two tones 1000Hz and 2000Hz for 5 seconds on P1.

freqout pl, 5000, 1000, 2000

110

Commands

The next program will increment through several tones holding each for 3 seconds. Try adjusting the
initial values tone1 and tone2 are set to. Each loop through the program tone1 will increment by 500
and tone2 will increment by 750.

tonel var long
tone2 var long
clear

main
tonel = tonel + 500
tone2 = tone2 + 750
freqout pO, 3000, tonel, tone2
Goto Main

Schematics

The sine wave output from FREQOUT is generated using a high frequency PWM. The higher
frequency need to be filtered to generate a cleaner tone. There are a number of way this can be
accomplished. The following circuits are provided as examples. P1 is used but any specified pin can
be connected.

Passive Low Pass Filter Direct Speaker
R1 R2 C1 SPK1
1K 1K 10uF

[P0 B }f +
c1 c2 + -
c2
0.1uf 0.01uf 10uF
Speaker

Simple Audio Amplifier

R1 UL c1
10K Sl N+ vouT ? +HZSOUF SPK1
GAIN —— 1
GAIN —— - "
— BYPASS IN- =5 0.05uF
\e'e VS GND
R2
LM386 110 speaker

111

Commands

GOosuB

Syntax
gosub label{[argument1,...,argumentN]}{,DataResult}

» Label - the go to label of the subroutine to be execute.

* Argument - is user defined arguments to send to the called subroutine. The only limit to the
amount of arguments used is program memory.

» DataResult - is an optional variable to store the value returned from called subroutine.

Supported
* BA - Supported.
* BAN - Supported.
* BAP - Supported.
* BAP40 - Supported.

Description

The GOSUB command will jump to a specified label. After executing the code at the jump label a
RETURN command is then used to return the program to the next command after the last called
GOSUB.

If you are familiar with some BASIC languages there is typically a limit to what is called nesting. This
is where multiple GOSUB...RETURN statements are nested inside of each other. There is no limit to
this with Studio other than the size of the available stack memory.

GOSUB stores the address of the next command on the stack and jumps to the specified label. User
specified arguments can be defined in the subroutine and a return value from the subroutine called
can be stored in the variable that is specified by the GOSUB DataResult argument.

Notes

1. Subroutines should exit via the RETURN command, which clears the saved address from the
stack and returns to the command following the GOSUB. Do not use BRANCH or GOTO when
exiting a subroutine.

2. User defined arguments must match the number of arguments defined at the subroutine. If they
do not match, a stack overflow or underflow will happen.

3. If subroutines return a value the GOSUB is not required to use it or specify a return value variable

112

Commands

Example

The below program will print the results to the terminal window at 9600 baud. The results will be 110.
The GOSUB command has to arguments and includes DataResult variable. The values 10 and 100
are passed to the subroutine MyAdd. The values are then loaded into the variables argl and arg?2.
Since RETURN can have an expression the variables argl and arg2 are added and returned to the
variable result.

Result var long

Main
Gosub myadd[10,100],result
_ Serout s out, 19600, [""Result =",dec result]
n

Argl var long
Arg2 var long

MyAdd [argl,arg2]
Return argl+arg2

See Also
RETURN
EXCEPTION

113

Commands

GOTO

Syntax
goto label

* Label - is a label the program will jump to.

Supported
* BA - Supported.
* BAN - Supported.
* BAP - Supported.
* BAP40 - Supported.

Description
The GOTO command tells the program to jump to some label.

Notes
1. Can not use reserved words or variables as label names.

Examples
Connect to the following program with the terminal window set to 9600 baud. The following program is
a simple loop using GOTO that will repeat for ever.

;Demo Program - GOTO.bas

basic
Pause 800))
serout s out,i19600,[0, “Basic’]
pause 800
goto micro
goto basic

micro
serout s out,i19600,[2, “ Micro]
pause 800
Goto rules
goto basic

rules _
serout s out,i19600,[2, “ Rules!”]
pause 800
goto basic

114

Commands

HIGH

Syntax
high pin

* PIN - is a variable, constant or expression that specifies which pin to go high.

Supported
* BA - Supported.
* BAN - Supported.
* BAP - Supported.
* BAP40 - Supported.

Description

The HIGH command is an output command that will set a pin HIGH. All pins can be in 3 states. HIGH,
LOW and FLOAT (input). The HIGH command will change any of these states to an output and set
the pin HIGH (5VDC)

Notes

1. If a variable is used, the variables value will be directly translated into a pin number. If the variable
equals 0 then PO will go high. If the value is out of range to the pins that are present nothing will
happen. If you have 10 pins and the variable equals 11 then nothing will happen.

Examples
The following program is a simple loop using HIGH and LOW commands that will repeat for ever. If
you connect an LED to PO it will blink at half second intervals forever.

;ALL - all_high.bas

Main SFiel (o
i
PagsepSOO
Low pO
Pause 500
Goto Main

115

Commands

HPWM

Syntax
hpwm pin,period,duty{,wait}

e Pin - hardware capable PWM pin number. See table below.
» Period - the time in clock cycles for a single pulse (high and low part).
» Duty - the time in clock cycles for the high side of the pulse.

» Wait - an optional boolean (true or false) argument that will cause the command to wait until the
current pulse has finished before setting the new period and duty. This eliminates the possibility
of a glitch in the pulses.

Supported
* BA - Supported.
* BAN - Supported.
* BAP - Supported.
* BAP40 - Supported.

HPWM Capable Pins

Processor Pins

Nano 18 P3

Nano 28 P9 /P10

Nano 40 P9 /P10

Atom 24m P9 /P10

Atom 28m P9 /P10

Atom 40m P9 /P10

AtomPro One P4/ P5/P6

AtomPro 24m P10/ P11/P12

AtomPro 28m P10/ P11/P12

AtomPro 40m P9/P10/P11/P13/P14 /P15

Description

The HPWM command generates a pulse width modulated signal. HPWM is based on internal
hardware and is processor independent. Meaning it will run in the back ground while your program
performs additional task. HPWM has several uses, some of which are generating an analog voltage,
DC motor control, servo control or generating a frequency.

To create an analog voltage the pin is transition from high to low quickly. During the transitions leaving
the pin high for a certain amount of time versus low and then averaging the output will cause a
voltage change. If the pin was high (5V) 50% of the time and then low (0V) the other 50% the voltage
output would be around 2.5V. By adjusting the ratio of how long the pin is high versus low we can
control the output voltage with a simple RC circuit.

116

Commands

The rate of the high side to the low side of a single pulse is called the duty cycle. The higher the duty
cycle the higher the overall output voltage would be. Period specifies how long a pulse is in total. A
pulse is made up of one high to low transition. So the period specifies the frequency. When dealing
with generating an analog voltage using the RC circuit the duty and period will determine at what
voltage and how much current the circuit can provide.

Notes
1. Nano and BasicATOM processors the highest Period allowed is 16383
2. BasicATOM Pro processors the highest Period is 524287 .

Schematic
The schematic is a simple RC filter. The resistor and capacitors values can be changed to affect the
final output.

R1
[IN > ouT
10K I+ -

10uF

The code snippet will generate a 50% duty cycle. Which, with no load, will output 2.5V on the output
side of our RC filter. Build the circuit, run this program and attach a volt meter probe to the output. Try
adjusting the duty cycle to see the results.

hpwm p10, 10000, 5000

Duty Cycle

The following chart is what the signal would look like on an oscilloscope at specific duty cycles. This
will give you an idea of what the duty cycle looks like. You can see their on times. More on time would
be mean more charge for our RC circuit which would increase its output voltage. At 0% duty cycle the
pin is always low. At 100% duty cycle the pin is always high.

Duty Cycles

0%

10% |_|
.
|
I

25%

50%

75%

[1

[L[]
LU
J U

=L 5L

100%

117

Commands

HSERIN

Syntax
hserin uart, {tlabel, timeout,}[{modifiers} InputData1, ..., {modifiers} InputDataN]

* UART - is an optional argument on a 1 UART processor. It is a constant of 1 or 2 that specifics
what UART to use. See HSERIAL Pin table below.

» Tlabel - is an optional label the program will jump to if the time out value is exceeded.
Tlabel must be specified if a Timeout value is set.

e Timeout - is an optional constant, variable or expression that specifies the time in milliseconds to
wait for data to be received.

* Modifiers - supports most all input modifiers. See Input Modifiers table below. For additional
information regarding modifiers see the Modifier section of this manual.

* InputData - is a variable were incoming data will be stored. The only limit to the amount of
InputData variables in the list is the amount of user ram on the processor. The incoming data can
be formatted with optional input modifiers. See the Modifier section of this manual.

Supported
* BA - Supported.
* BAN - Supported.
* BAP - Supported.
* BAP40 - Supported.

Description

HSERIN / HSEROUT use a special hardware feature called a UART. The UART allows the processor
to perform other task while receiving or sending serial data. The hardware runs in the background and
is processor independent. Data that is received, is stored in a buffer, regardless of what the processor
is doing. The HSERIN / HSEROUT commands then retrieve this data from the buffer. Some
processors have two UARTS that run independent of each other. The UART output is inverted. Which
is setup to work with a RS232 circuit. Non inverted mode is not support. A simple inverter circuit could
be used if needed. For all HSERIN / HSEROUT capable pins see the table below.

HSERIAL Capable Pins

Processor HSEROUT (TX) HSERIN (RX) HSEROUT (TX2) HSERIN (RX2)
Nano 18 P5 P2

Nano 28 P14 P15

Nano 40 P14 P15

Atom 24m P14 P15

Atom 28m P14 P15

Atom 40m P14 P15

AtomPro One S OuUT S_IN

AtomPro 24m P15 P14

AtomPro 28m P15 P14

AtomPro 40m S_OuT S_IN P15 P14
ARC32 S_OuT S_IN P26 P38

118

Commands

SETHSERIAL

MBasic must create a buffer in memory for each UART and specify the baud rate for the UART. The
directive SETHSERIAL sets the available parameters for the specified UART. This is only required
once at the beginning of a program. There are two UARTSs available on some processors. To set
UART1 use SETHSERIAL1 and to set UART2 use SETHSERIAL2.

The SETHSERIAL1 command is used to set UART1 as shown below.

sethseriall, baudrate {,databits, parity, stopbits} ;Set UART1

The SETHSERIAL2 command is used to set UART2 as shown below.

sethserial2, baudrate {,databits, parity, stopbits} ;Set UART2

Baud Rate

SETHSERIAL is also used to set the baud rate for HSERIAL. The other arguments shown below
are optional. They are typically set when attached to a proprietary device. Rarely would these be set
when communicating to a PC.

* Baudrate - is a predefined value that specifies the transmit and receive rate. Different processors
support different baud rates. See Supported Baud Rate table.

» DataBits - is an optional argument that defines how many bits are used. The default is 8. See
Supported Options table.

 Parity - is an optional argument that sets what the parity bit is. No parity, even parity or odd parity
are supported. The default is no parity (N). See Supported Options table.

» Stopbits - is an optional argument that specifies 1 or 2 stop bits in the serial format. The default
is 1. See Options table.

Options
DataBits Parity StopBits
HBDATABITS HNOPARITY H1STOPBIT
H7DATABITS HEVENPARITY H2STOPBIT

HODDPARITY

119

Commands

Multiple UARTSs

When two UARTS are available they can be setup independently of each other. The UARTS can be
set to different or the same baud rates. The second UART is only available on some processors. See
HSERIAL table. To setup both UARTS follow the example below:

sethseriall, H9600 ;Sets UART 1 to 9600 Baud
sethserial2, H38400 ;:Sets UART 2 to 38400 Baud

Example

The following example is a loop back. Wire the TX pin to the RX pin. It will receive and send to its
self to demonstrate how the buffer of the UARTS. Unlike normal SERIAL commands the HSERIAL
commands do not need to be running to receive data. Its done in the background.

sethseriall h57600

string var b¥te(20)
integer var long
main _ _

hserout [“Type a strln%3upto 20 characters long and hit enter”,13]

hserin [str string\20\13] _
hserout [“You string is: “,str string\20\13,13]

hserout[g“Type a decimal number and hit enter”,13]

hserin [dec integer] _

hserout [“Your number is:”,dec integer,13])

hserout [*“Your number in Hexidecimal is:”,hex |nteger,13]
hserout [“Your number in Bianry is:”,bin integer,13]

goto main

Supported Baud Rates

BAP Error BAP40 Error BA Error BAN Error

H300 0.16% H300 0.16% H2400 0.16% H600 0.16%
H600 0.16% HG600 0.16% H4800 0.16% H1200 0.16%
H1200 0.16% H1200 0.16% H7200 0.22% H2400 0.16%
H2400 0.16% H2400 0.16% H9600 0.16% H4800 0.16%
H4800 0.16% H4800 0.16% H12000 0.16% H7200 0.64%
H7200 0.64% H7200 0.22% H14400 0.22% H9600 0.16%
H9600 0.16% H9600 0.16% H16800 0.55% H12000 0.79%
H12000 0.79% H12000 0.16% H19200 0.16% H14400 0.79%
H14400 0.79% H14400 0.94% H21600 0.22% H16800 0.79%
H16800 0.79% H16800 0.55% H24000 0.16% H19200 0.16%
H19200 0.16% H19200 1.36% H26400 0.74% H21600 0.64%
H21600 0.64% H21600 0.22% H28800 0.94% H24000 0.79%
H24000 0.79% H24000 0.16% H31200 0.16% H26400 0.32%
H26400 0.32% H26400 1.36% H33600 0.55% H28800 2.12%
H28800 2.12% H28800 1.36% H36000 0.79% H31200 0.16%
H31200 0.16% H31200 0.16% H38400 1.36% H33600 0.79%
H33600 0.79% H33600 2.10% H57600 1.36% H36000 0.79%
H36000 0.79% H36000 2.12% H115200 1.36% H38400 0.16%

120

Commands

BAP Error

BAP40 Error BAN Error

H38400 0.16% H38400 1.73%
H40800 2.12% H40800 2.12%
H45600 0.32% H45600 2.10%
H50400 0.79% H48000 0.16%
H55200 0.64% H52800 1.36%
H62400 0.16% H57600 1.36%
H72000 0.79% H62400 0.16%
H81600 2.12% H69600 0.22%
H84000 0.79% H76800 1.73%
H98400 1.63% H79200 1.36%
H100800 | 0.79% H88800 0.55%
H55555 0.00% H91200 2.10%
H62500 0.00% H103200 0.94%
H71428 0.00% H105600 1.36%
H83333 0.00% H69444 0.00%
H100000 | 0.00% H78125 0.00%
H125000 | 0.00% H89285 0.00%
H166666 | 0.00% H104166 0.00%
H250000 | 0.00% H125000 0.00%
H500000 | 0.00% H156250 0.00%

H208333 0.00%

H312500 0.00%

H625000 0.00%

HSERINNEXT
hserinnext mode

Is a function. Reads the next bytes available in the specified UARTs buffer without removing it from
the buffer. The available mode values are:

Mode Definition

0x01 Read UART1 and wait for byte

0x02 Read UART2 and wait for byte

0x81 Read UART1 and return -1 if no byte available
0x82 Read UART2 and return -1 if no byte available

temp var byte

temp = hserinnext 0x01

121

Commands

HSEROUT

Syntax
hserout {uart,}[{modifiers}data1,...,{modifiers}dataN]

* UART - is an optional argument on a 1 UART processor. It is a constant of 1 or 2 that specifics
what UART to use. See HSERIAL Pin table below.

* Modifiers - supports all output modifiers. See Input Modifiers table below. For additional
information regarding modifiers see the Modifier section of this manual.

» Data - is a variable where data sent from the debug window will be stored.

Supported
* BA - Supported.
* BAN - Supported.
* BAP - Supported.
* BAP40 - Supported.

Description

HSERIN / HSEROUT use a special hardware feature called a UART. The UART allows the processor
to perform other task while receiving or sending serial data. The hardware runs in the background and
is processor independent. Data that is received, is stored in a buffer, regardless of what the processor
is doing. The HSERIN / HSEROUT commands then retrieve this data from the buffer. Some
processors have two UARTS that run independent of each other. The UART output is inverted. Which
is setup to work with a RS232 circuit. Non inverted mode is not support. A simple inverter circuit could
be used if needed. For all HSERIN / HSEROUT capable pins see the table below.

HSERIAL Capable Pins

Processor HSEROUT (TX) HSERIN (RX) HSEROUT (TX2) HSERIN (RX2)
Nano 18 P5 P2

Nano 28 P14 P15

Nano 40 P14 P15

Atom 24m P14 P15

Atom 28m P14 P15

Atom 40m P14 P15

AtomPro One S OuUT S_IN

AtomPro 24m P15 P14

AtomPro 28m P15 P14

AtomPro 40m S_OuT S_IN P15 P14
ARC32 S_OuT S_IN P26 P38
Notes

Most of the information for HSEROUT would simply be duplicated from HSERIN. See HSERIN.

122

Commands

HSERVO

Syntax
hservo [pin\pos\spd, ..., pinN\posN\spdN]

» Pin - are constants, variables or expressions that specify the pin numbers connected to servos.

» Pos - are constants, variables or expressions that specify the desired positions for each of the
specified servos.

» Spd - are constants, variables or expressions that specify the speed used to move each servo to
its new position (default 0).

Supported
* BA-NOT Supported.
* BAN - NOT Supported.
* BAP - Supported.
* BAP40 - Supported.

Description

HSERVO uses a back ground hardware system to control one or several servos at a time. HSERVO
is a non blocking command. Program execution will continue as normal while the command is
executed. HSERVO can control the position and the speed of up to 32 servos. Before using this
command the ENABLEHSERVO compile time directive must be included in your program.

Notes

1. Analog servos may need to be deactivated. To accomplish this set its position to —24000 on the
BAP 24 and BAP 28 modules and to -30000 on the BAP 40 module and ARC32 dev board.

2. The first time a servo is started its speed will be set to 0 even if you specify a speed.

Example
The example HSERVO program is a very basic program that will control 2 servos connected to PO
and P1 of the microcontroller you are using.

hservo [pO\O,p1\0] ;set initial servo positions(centered)

main
hservo [pO\1000\100,p1\-1000\100]
ause 1000
servo [pO\-1000\100,p1\1000\100]
pause 1000

goto main

HSERVO System

The HSERVO system has several supporting commands that can be used to control the interaction
between the program and the servo. The following commands require the HSERVO system is loaded
by using the HSERVO command somewhere in your program.

123

Commands

HSERVOWAIT
hservowait [pin1, ..., pinN]

In some situations it may be necessary to wait for the HSERVO command to finish updating the servo
position before program execution resumes. The HSERVOWAIT command is used to delay program
execution until HSERVO has finished moving the servos specified.

Example
The example will pause program execution until servos attached to PO through P4 are finished being
moved to new positions.

hservowait [p0,pl,p2,p3,p4]

HSERVOPOS
hservopos pin

To determine the current position a particular servo is set to the HSERVOPOS command is used. The
value returned is the position the HSERVO system is currently driving the servo at. Typically there is
no feedback from a servo for true position.

Example
The example sets a word sized variable and loads it with the last position used for a servo attached to
PO.

temp var word
temp = hservopos p0

HSERVOIDLE
hservoidle pin

To determine if a servo is still being moved to a new position by HSERVO the HSERVOIDLE
command is used. It will return a value of 0 if the servo specified is not idle. If the specified servo has
reached its new position a value not equal to 0 (OXFFFFFFFF) will be returned.

Example
The example will update a servo on PO. The program will loop and report until the servo is idle.

hservo 5p0\0]
ause 1000
servo [pO\1000\100]

main
iT (NOT hservoidle p0O) then } }
serout s_out,u9600,?“ ervo PO is not idle”,13]
endif

goto main

124

Commands

IF...THEN...ELSEIF...ELSE...ENDIF

Simple Syntax

if expression then label

if expression then goto label
if expression then gosub label

Extended Syntax

if expression then
...code...

endif

if expression then
...code...

else
...code...

endif

if expression then
...code...

elseif expression
...code...

endif

if expression then
...code...

elseif expression
...code...

else
...code...

endif

Supported

* BA - Supported.

* BAN - Supported.

* BAP - Supported.

* BAP40 - Supported.

Description

IF.THEN are the decision makers of MBasic. It evaluates a condition to determine if it is true. If you
want to test the value of a variable against another variable or a known value you would use the IF..
THEN. When the results are true the code after THEN is executed. If it returns false the code after
THEN will be ignored. A simple example would be to increment a variable in a loop and each time
through the loop test if our variable equals 10. This lets us control how many times through the loop
we want to run. We can also test if our variables is greater than, less than or even not equal too.
Several math expressions can be used as the condition to test.

main
iT temp = 10 then label
goto main

125

Commands

The above statement is looking for our variable temp to equal 10. If it is true then we will jump to
label. If its not true then lets keep looping. Since there is nothing to make our variable equal to 10 this
loop would run forever.

Notes

1. Multiple ELSEIF blocks may be used in a single IF... THEN block.
2. ELSE will only execute following code if no conditions were true.
3. ENDIF is required to close a block of conditionals.

Example

This first example demonstrates using the IF...THEN argument with a go to label. If something is true
jump to the label after the THEN statement. Otherwise, if the condition is false execute the commands
on the next line after the THEN statement. You can follow the program flow with a terminal window
connected at 9600 baud.

value var long
value = 0

main
value = value+l
if value = 10 then reset

;display the value on the PC terminal window
serout s out, 19600, [""Value=",dec value,13]

pause 1000
goto main
reset

value = 0
goto main

GOSUB Example

A GOSUB statement can be used after a THEN. When the condition is true a GOSUB will send
the program to the GOSUB label. Eventually a RETURN statement is expected. This will return the
program to the next line of code after the GOSUB statement was used. Its an easy way to create
conditional branching in a main program loop. The program will increment value by 1 each loop
through. Once value is equal to 10 the condition becomes true and the GOSUB label is executed.
Which in turns resets value to 0 starting the process over. This program was design to be followed
using a terminal window connected to it at 9600 baud. Follow the results until you understand the
decision making process. Can you guess what the terminal window will show?

value var long
value = 0

main
value = value+l
if value = 10 then gosub reset

;display the value on the PC terminal window
serout s out, 19600, [""Value=",dec value,13]

pause 1000
goto main
reset

value = 0
return

126

Commands

Advance Arguments

Now that we understand the basics of IF..THEN we can explore optional arguments. The optional
arguments may not make sense at first. The next section will explain each with sample code that will
display the result so you can follow along.

ENDIF Example

Not always will you want to jump to a label or GOSUB. In some cases you may want to run a block
of code when the condition is true. MBasic can execute a command or commands directly after the
THEN statement instead of jumping to a label. The ENDIF is used to tell MBasic run the following
commands after THEN if the condition is true. So ENDIF literately mean what it says, lets end the

IF. When the IF..THEN condition is false ENDIF tells MBasic to instead, run the commands after
ENDIF. This simply resumes normal program operation. ENDIF is an easy way to execute a group

of commands based on some condition returning true or completely skipping them if the condition is
false. This program was design to be followed using a terminal window connected at 9600 baud. See
if you can you guess the results?

value var long
value = 0

main
value = value+1l
ifT value = 10 then
value = 0
endif

;display the value on the PC terminal window
serout s out, 19600, [""Value=",dec value,13]
pause 1000

goto main

ELSEIF Example

In some cases you may want to test for several possible conditions. ELSEIF allows you to check
multiple possible conditions until one of them is true in a single IF..ENDIF block. Until one of the
ELSEIF conditions is found to be true each condition will be tested. As soon as one is found to be

true the code in that section will execute and then program execution will continue starting after the
ENDIF.

if temp = 10 then

temp = 20

elseif temp = 20
temp = 10

endif

127

Commands

There is no limit to how many ELSEIF statements you can have in any single IF...THEN block. The
following program shows an example of a program using multiple ELSEIF statements. Can you
guess what the output will be?

This program was design to be followed using a terminal window connected at 9600 baud. See if you
can you guess the results?

value var long
value = 0

main _
if value = 0 then
value = 1

elseif value = 1
value = 2

elseif value = 2
value = 3

elseif value = 3
value = 4

elseif value = 10
__value = 0
endif

;display the value on the PC terminal window
serout s out, 19600, [""Value=",dec value,13]
pause 1000

goto main

ELSE

So we tested a bunch of conditions and everything was false which means the program will resume
normal operation, skipping any code found enclosed within the IF.. THEN / ENDIF statements unless
we add an ELSE block. The ELSE block will execute if everything else was FALSE. This program
was design to be followed using a terminal window connected at 9600 baud. See if you can you
guess the results?

value var long

value = 0

main _
if value = 1 then
value = 1
elseif value = 2
value = 2
else
value = 3

endif

;display the value on the PC terminal window
serout s out, 19600, [“Value=",dec value,13]
pause 1000

goto main

128

Commands

INPUT

Syntax
input pin

* Pin - is any expression, constant or variable that specifies an input capable pin number to use.

Supported
* BA - Supported.
* BAN - Supported.
* BAP - Supported.
* BAP40 - Supported.

Description

In order for a pin to “see” something from the outside world we need to set it as an input. When a pin
is set as an input, it can be read as 1 (high) or 0 (low). All input based commands will automatically
set the pins state and after execution leave the pin in an input state. During start up all pins are in

an input state. Typically the INPUT statement would be used in the beginning of your program to set
specific pins to known states.

Notes
1. On power up, all pins by default are inputs.

Example

Connect to the running program example below using the terminal window set to a baud rate of 9600.
As the program runs it will print the state of pins 0 to the terminal window. P1 is then set high and the
first report is PO set as a 1 (high). Next command sets it to an input and PO is now 0 (low). P1 is then
set back to an output. Since its last known state was high it will return to this state when set to an
output again so PO will read 1 (high) again. See if you can follow the program flow to see when the
pin state changes.

;Connect pO to pl

Input po)
High pl ;Set P1 to an output and hlgh
Serout s out, 19600, [“PO state is “,dec INO,13]
Pause 1000
Input pl } }
Serout s out, 19600, [“PO state is “,dec INO,13]
Pause 1000
;Set P1 high, will remember its last set state
Output pl))
Serout s out, 19600, [“PO state is “,dec INO,13]
Pause 1000

129

Commands

12COUT

Syntax
i2cout sda, scl, controlbyte, [{modifiers}databyte1, ..., {modifiers}databyteN]

» SDA - is a variable or constant that defines the serial data pin (SDA).
» SCL - is a variable or constant that defines the serial clock pin (SCL).

» ControlByte - is a byte sized variable or constant (0-255) that sets the device ID and the device
address of the 12C device.

* Modifiers - supports all output modifiers. See modifier section of this manual.

» DataBytes - is a list of byte sized variables or expressions with optional modifiers that are the
values to be written or sent to an attached 12C device. The only limit to the number of data
bytes in one command is the device its self.

Supported

* BA - Supported.

* BAN - Supported.

* BAP - Supported.
BAP40 - Supported.

Description

The 12COUT command is generic to all 12C devices and not specific to I2C EEPROMSs. There are
many 12C devices available as the 12C format is fairly popular. The controlbyte is used to indicate
the device type and address (A0,A1,A2). The high nib (reading from left to right, first 4 bits in a byte)
control the device type ID. An 12C EEPROM would be %1010. This information is typically found in
the device data sheet. The next 3 bits represent A0, A1, A2 pins and if they are set high or low. The
last bit can be ignored.

A controlbyte of %10100000 indicates a device type ID of 1010 for I2C EEPROM, The next 3 zeros
indicate AO, A1 and A2 are tied to ground for address 000. The last bit is ignored.

There are many different 12C devices. Each can have different control bytes. If you are using an 12C
not mentioned in this manual you can refer to the device data sheet for information on addressing the
device.

Notes

1. To read or write any 12C eeprom an I2COUT command must be used to specify the address.

2. 12C devices other than [2C EEPROM will have a different device type ID.

3. A0, A1 and A2 are the physical address pins. If only 1 device exist on the 12C buss, address pins
are usually connected to GND.

4. More than one 12C device can be on the same SDA and SCL pins. Each device requires a unique
address by changing A0,A1 and A2 pins.

5. Some 12C EEPROM internally use AQ, A1 and A2 to change memory banks. Commonly 24LC04
(24C04) and 24LC08 (24C08).

130

Commands

Schematic

The schematic illustrates how to connect an 12C EEPROM for use with the sample code. A0,A1 and
A2 are all tied to GND. This sets the device address to 000. WP is the write protect pin and can not
be left floating. SCL is the clock pin and SDA is the data pin. For low speed EEPROM 10K pull-up
resistor will work. However for faster 12C devices you may need to increase this value up to 1K.

GND Ul
2 A0 WP —L—{GND
371 Al 6
A2 SCL <91 scL
SDA 2> SDA—RAmATK
8 vcec vss 4 vee
VCC 24LCBA-1/P GND

131

Commands

Examples

Connect to the following program with the terminal window set to 9600 baud. The program will write
to the first 10 bytes of a 24LC01 EEPROM using byte addressing. Each loop databyte is added by 7.
The values that will be written are 0, 7, 14, 21, 28, 35, 42, 49, 56 and 63. The loop pauses so you can
see the data being printed to the screen.

;ALL - all_i2c byte.bas

;This program will write and read to the first
;10 locations of a 24LCO1 12C eeprom using
;byte address.

databyte var byte
address var byte

databyte = 0
address = 0

pause 500

main i} -
serout s out, 19600, [13, “Writing:”,13]

for address = 0 to 9
i2cout pO, pl, %10100000, [address, databyte]

Serout s out, 19600, [dec address, “ = *““, dec databyte, 13]
databyte = databyte + 7

ause 100

ext

databyte = 0

address = 0

pause 100 } }

serout s out, 19600, [13, “Reading:”,13]

for address = 0 to 9

i2cout pO, pl, %10100000, [address]
i2cin p0,pl, %10100000, [databyte]

serout s out, 19600, [dec address, “ = *““, dec databyte, 13]
pause 100

next

end

132

Commands

12CIN

Syntax
i2cin sda, scl, controlbyte, [{modifiers}databyte1,...,{modifiers}databyteN]

» SDA - is a variable or constant that defines the serial data pin (SDA).
» SCL - is a variable or constant that defines the serial clock pin (SCL).

» ControlByte - is a byte sized variable or constant (0-255) that sets the device ID and the device
address of the 12C device.

* Modifiers - readdm supports all input modifiers. See modifier section of this manual.

» DataBytes - is a list of byte sized variables with optional modifiers that store the
values read from an attached 12C device. The only limit to the number of data bytes in one
command is the device its self.

Supported

* BA - Supported.

* BAN - Supported.

* BAP - Supported.
BAP40 - Supported.

Description

The 12CIN command is generic to all I2C devices and not specific to 12C EEPROMSs. There are many
I2C devices available as the 12C format is fairly popular. The controlbyte is used to indicate the device
type and address (A0,A1,A2). The high nib (reading from left to right, first 4 bits in a byte) control the
device type ID. An 12C EEPROM would be %1010. This information is typically found in the device
data sheet. The next 3 bits represent A0, A1, A2 pins and if they are set high or low. The last bit can
be ignored.

A controlbyte of %10100000 indicates a device type ID of 1010 for an I2C EEPROM, The next 3 bits
are set to zeros which indicates address pins A0, A1 and A2 are tied to ground for address 000. The
last bit is ignored.

Notes

1. To read or write any 12C EEPROM an 12COUT command must be used to specify the address.

2. 12C devices other than [2C EEPROM will have a different device type ID.

3. A0, A1 and A2 are the physical address pins. Typically if only 1 device exist on the 12C buss the
address pins are all tied to GND.

4. You can connect several I12C devices together on the same SDA and SCL pins by changing the
AO0,A1 and A2 address pins.

5. Some 12C EEPROM internally use AO, A1 and A2 to change memory banks. Commonly 24LC04
(24C04) and 24LCO08 (24C08).

Examples
See 12COUT.

133

Commands

Examples

Connect to the following program with the terminal window set to 9600 baud. This next example
will write to the first 10 locations of a 24LC512 using word sized addressing. Address is set as a
word sized variable. For the Address data we use a high and low byte modifier to load the address
values from Address. Each loop we add 7 to databyte which is what we are writing to the EEPROM.
The values written are 0, 7, 14, 21, 28, 35, 42, 49, 56 and 63. The program will print to the terminal
window what it is writing and then what is being read. If the values above are not returned then you
have a bad EEPROM or you don’t have something wired correctly (see schematic).

;ALL - all_i2c _word.bas

;This program will write and read to the first
;10 locations _of a 24LC512 12C eeprom using
;word addressing.

databyte var byte
address var Word

databyte = 0
address = 0

pause 500

main i} -
serout s out, 19600, [13, “Writing:",13]

for address = 0 to 9
i2cout pO, pl, %10100000, [address.bytel, address.byteO, databyte]

Serout s out, 19600, [dec address, “ = *““, dec databyte, 13]
databyte = databyte + 7

ause 100

ext

databyte = 0

address = 0

pause 100 : :

serout s out, 19600, [13, “Reading:”,13]

for address = 0 to 9

i2cout pO, pl, %10100000, [address.bytel,address.byteO]
i2cin p0,pl, %10100000, [databyte]

serout s out, 19600, [dec address, “ = *““, dec databyte, 13]
pause 100

next

end

134

Commands

Examples

Connect to the following program with the terminal window set to 9600 baud. The 24LCO08 has 4
pages of 255 bytes each. The example will write to the first 10 memory locations of all 4 pages then
read back and print to the terminal window. Each page is accessed with A0,A1 and A2 internally. So
the control bits change for each page

;ALL - all_i2c paging-bas

;This program will write and read to the first
;10 memory locations of all 4 pages of a 24LC08
;12C eeprom using byte addressing.

databyte var byte
address var Byte

databyte = 10
address = 0

pause 500

main i} -
serout s out, 19600, [13, “Writing:",13]

for address = 0 to 9 ;increment through the first 10 locations

i2cout pO, pl, %10100000, [address, databyte ;page 1
i2cout p0, pl, %10100010, [address, databyte ;page 2
i2cout pO, pl, %10100100, [address, databyte ;page 3
i2cout pO, pl, %10100110, [address, databyte ;page 4

;lets see what we are writting to each address on each page
serout s out, 19600, [“Page 1 to 4-> “,dec address,” = *“,dec |
databyte, 13]

databyte = databyte + 10
ause 100
ext

databyte = 0

address = 0))

serout s out, 19600, [13, “Reading:”,13]

for address = 0 to 9 ;increment through the first 10 locations

i2cout pO, pl, %10100000, [address] ;page 1
i2cin p0,pl, %10100000, [databyte]

i2cout 80, pl, %10100010, [address] ;page 2
i2cin p0,pl, %10100010, [databyte]

i2cout pO, pl, %10100100, [address] ;page 3
i2cin p0,pl, %10100100, [databyte]

i2cout 80, pl, %10101100, [address] ;page 4
i2cin p0,pl, %10101100, [databyte]

;lets read and print each address of each page.
serout s out, 19600, [“Page 1 to 4-> “,dec address,” = “,dec |
databyte, 13]

pause 100
next

end

135

Commands

LCDINIT

Syntax
Icdinit RS\ E\ D7\ D6\ D5\ D4 {,RW}

* RS - is any expression, constant or variable that specifies the 1/0 pin connected to the LCD’s
R/S pin.

* E - is any expression, constant or variable that specifies an 1/0 pin connected to the LCD’s
enable pin.

« D7 - is any expression, constant or variable that specifies an I/O pin connected to the LCD’s
data bit 7 pin.

» D6 - is any expression, constant or variable that specifies an I/O pin connected to the LCD’s
data bit 6 pin.

* D5 - is any expression, constant or variable that specifies an I/O pin connected to the LCD’s
data bit 5 pin.

* D4 - is any expression, constant or variable that specifies an I/O pin connected to the LCD’s
data bit 4 pin.

¢ RW - is any expression, constant or variable that specifies an I/O pin connected to the LCD’s
read or write enable pin.

Supported
* BA - Supported.
* BAN - Supported.
* BAP - Supported.
* BAP40 - Supported.

Description

There are 3 LCD commands available in MBasic and are used to interface to a Hitachi HD44780
controller based LCD. This is probably one of the most common LCDs available. 1x16 all the way
up to 4x40 size screens are supported. The HD44780 controller does require special initialization
commands so the LCDINIT command was added to handle this automatically. The LCDINIT
command is only needed once in a program, typically to the beginning of a program. The LCD does
require some time to power up before running the LCDINIT command. A short pause placed before
the LCDINIT command will handle any power up issues. Otherwise the LCDINIT command can be
ran later in a program to provide the same power up time.

136

Commands

Schematic

The schematic shown is a common HD44780 wiring. 7 I/O pins are required to drive it in 4 bit mode.
To control the screen contrast a 20K potentiometer R2 is used. Optionally the backlight can be
controller by driving BKL to GND either hard wired or through a transistor circuit for optional software
control.

T R1

AAA
\A4

10K

LCD HD44780

Example
The following program allows the LCD time to power up with a short pause. The LCD is then
initialized. After which “Hello World!” is printed to the screen using the LCDWRITE command.

;DEMO PROGRAM - LCDINIT.BAS

Pause 500
Icdinit pO\pl\p7\p6\p5\p4,p2
Icdwrite pO\pl\p7\p6\p5\p4,p2, [CLEARLCD,HOMELCD,SCR,TWOLINE,”Hello World]

137

Commands

LCDWRITE

Syntax
Icdwrite RS\ E\ D7\ D6\ D5\ D4 {,RWs}, [(modifiers} expression1, ..., (modifiers} expressionN]

* RS - is any expression, constant or variable that specifies the 1/0 pin connected to the LCD’s
R/S pin.

* E - is any expression, constant or variable that specifies an 1/0 pin connected to the LCD’s
enable pin.

« D7 - is any expression, constant or variable that specifies an I/O pin connected to the LCD’s
data bit 7 pin.

» D6 - is any expression, constant or variable that specifies an I/O pin connected to the LCD’s
data bit 6 pin.

* D5 - is any expression, constant or variable that specifies an I/O pin connected to the LCD’s
data bit 5 pin.

* D4 - is any expression, constant or variable that specifies an I/O pin connected to the LCD’s
data bit 4 pin.

¢ RW - is any expression, constant or variable that specifies an I/O pin connected to the LCD’s
read or write enable pin.

* Modifiers - are any output modifiers as shown in the modifiers section of this manual.

» Expression - is any expression, constant or variable that specifies data to be displayed to the Icd
screen. In addition screen locations can be specified (SCRRAM).

Supported
* BA - Supported.
* BAN - Supported.
* BAP - Supported.
* BAP40 - Supported.

Description

The LCD commands are setup to work with the Hitachi HD44780 controller. This is probably one of
the most common LCDs available. 1x16 all the way up to 4x40 size screens are supported. Before
using the LCDWRITE command see LCDINIT command.

The LCDWRITE command is used to address the HD44780 ram. Depending on the display size there
is one byte of screen ram for each display character. Most displays will include additional off screen
ram. The off screen ram locations can be used to store characters that are then later shifted onto the
screen. LCDWRITE includes several formatting and cursor control commands. These are used to
position the cursor or set features on the HD44780 controller. The following table includes all the LCD
commands MBasic supports.

138

Commands

LCD Command Table

Command Value Function

Lcdclear $101 Clear display. Clears all on and off screen ram.
Lcdhome $102 Return to home position.

Inccur $104 Auto increment cursor (default).

Incscr $105 Auto increment display.

Deccur $106 Auto decrement cursor.

Decscr $107 Auto decrement display.

Off $108 Display, cursor and blink OFF.

Scr $10C Display ON, cursor and blink OFF.

Scrblk $10D Display and blink ON, cursor OFF.

Screur $10E Display and cursor ON, blink OFF.

Scrcurblk $10F Display, cursor and blink ON.

Curleft $110 Move cursor left.

Currright $114 Move cursor right.

Oneline $120 Set display for 1 line LCDs.

Twoline $128 Set display for 2 line LCDs.

Cgram | address $140 Set CGRAM address for reading or writing.
Scrram | address $180 Set display RAM address for reading or writing.

LCD Commands

The LCD commands are used to setup the display. This is done if the first LCDWRITE command
issued. It only needs to be done once unless something is needs to be changed the next time the
LCDWRITE command is used. If you are using a 2x16 LCD display you would need to issue the
Twoline command. One of the SCR commands are required to turn the display on. Otherwise data
will be written to the DDRAM but not displayed. The following code snippet turns the screen on, clears
it and moves the cursor to home before printing “Hello World!”.

;DEMO PROGRAM - LCDINIT.BAS

Pause 500
Icdinit pO\pl\p7\p6\p5\p4,p2
Icdwrite pO\pl\p7\p6\p5\p4,p2, [CLEARLCD,HOMELCD,SCR,TWOLINE,”Hello World]

LCD DDRAM

The HD44780 uses DDRAM to store ASCII characters. The one HD44780 control can handle up to

4x20 ram locations. This means one controller can drive up to a 4x20 screen. A 4x40 display would

use to HD44780 controllers. With this in mind a 1x16 or 2x16 screen still has all the ram locations to
make up a 4x20 display. Only certain locations will actually print to the display while the unused can
be written to an characters can be stored for later shifting into the display area. The diagrams below
illustrate how the memory map (DDRAM) is handled for each display.

139

Commands

2x16 LCD Memory Map

The HD44780 controller has the same memory locations regardless of display size. Displays that are
smaller than the amount of DDRAM available will allow writes and reads to off screen locations. The
2x16 display uses only 0-15 and 64-79 for on screen. As you can see the memory locations are not in
order. This is due to how the HD44780 controller was designed.

O12345678901112131415....
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79

4x20 LCD Memory Map

The HD44780 controller has the same memory locations regardless of display size. The 4x20 display
uses all the memory locations to display on the screen. Again you can see memory address locations
are not in order.

o 1 2 3 4 5 6 7 8 9 0 11 12 13 14 15 16 17 18 19
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39

84 8 86 8 8 8 90 91 92 93 94 9 96 97 98 99 100 101 102 103

Cursor Positioning

The cursor is set to the position the screen is being written to. The cursor can be positioned any
where in the 80 locations. With this control the cursor can be moved around the screen and individual
characters can be changed or erased at will. Characters can also be loaded into the off screen
memory and then shifted onto the display area.

This following code snippet is setup to work with the schematic shown for LCDINIT. It moves the
cursor to the home position and clears the memory. Returning the cursor home with LCDHOME does
not clear the memory. The LCDCLEAR command is used in conjunction with sending the cursor
home:

lIcdwrite pO\pl\p7\p6\p5\p4,p2,[Icdclear, Icdhome]

The next line will print an ASCII “A” to an off screen location on a 2x16 LCD Display using the screen
ram command with an address. If you look at the 2x16 memory map you will see location 16 is off
screen:

lIcdwrite pO\pl\p7\p6\p5\p4,p2,[scrram+16, “A™]

140

Commands

Custom Characters

Most HD44780 controllers provides room for 8 user definable characters. They are ASCII values 0 to
7. The programmable characters are 5x8 pixels. There are 8 bytes for each custom character. The
bytes are arranged in a grid to define the new character. The custom characters can be used to make
sprites that can then be used to form larger characters that are made up of multiple locations and
spread across more than one display line. The first 3 bits are ignored (7-5). Only bits 4-0 are used to
define the character. An on pixel is express with a 1 and off is 0.

Bits -> 4 3 2 10 Binary Hex Decimal
Byte 0 00000000 00 00
Byte 1 | B | 00001010 0A 10
Byte 2 - B 00001010 0A 10
Byte 3 | B | 00001010 0A 10
Byte 4 00000000 00 00
Byte5 I B ooo10001 1 17
Byte 6 | | | | 00001110 OE 14
Byte 7 00000000 00 00
Example

To write and display the custom character shown above you would use the LCDWRITE command
with the CGRAM function. The following code snippet will write and display the custom character
shown above on a 2x16 LCD display. Connect LCD as shown for LCDINIT.

Icdinit pO\pl\p7\p6\p5\p4

Icdwrite pO\pl\p7\p6\p5\p4, [cgram+0,0x00,0x0A,0x0A,0x0A,0x00,0x11,0x0E,0x00,scrram+0]

The sample code below will clear the screen and starting from home print “Hello Word!” with our
newly created custom character shown above.

Icdinit pO\pl\p7\p6\p5\p4

;create custom character
Icdwrite pO\pl\p7\p6\p5\p4, [cgram+0,0x00,0x0A,O0x0A,0x0A,0x00,0x11,0x0E,0x00,scrr
am+0]

;clear screen, home cursor, print “Hello World!” and custom character
Icdwrite pO\pl\p7\p6\p5\p4, [Icdclear, Icdhome,”Hello World! “,0]

141

Commands

Custom Shapes

Custom characters can be created and used as sprites to form large graphics. The following example
will display a 2 line 3 character wide heart in the middle of a 2x16 LCD display. Experiments see what
creative characters and sprites you can come up with. The leading 3 zeros have been left off the
binary value due to space constraints. When creating the custom characters you will need to add the
3 leading zeros. See example code.

Bits -> 4 3 210 Bin 4 3 2 1 0 Bin 4 3 210 Bin

Byte 0 00000 00000 00000
Byte 1 | | U oooco [N 11000
Byte 2 BER o B B oo R 11100
Byte 3 BEEE o ke | | | 11110

HE HHE
Byte 4 L] || o | | | | B | | | | 11110
SRR | | | | B | | | | R | [| | W
e AN »» HEEBEEE «w BEHEBEEE 1

Bits -> 4 3 210 Bin 4 3 210 Bin

eye0 NI 1w ki | | | | [N
Byte 1 | | | | O i | | | | 11110

Byte 2 BEER oow ik | | | 11100

Byte 3 BBl oou i | 11000

Byte 4 B o000t mu | 10000

Byte 5 00000 1111 00000

Byte 6 00000 01110 00000

Byte 7 00000 00100 00000
Example

The following program will load all 6 custom characters and display them on a 2x16 LCD display
using the schematics shown for LCDINIT. The program uses the hex values which can be generated
by converting from binary to hex.

lcdinit pO\pl\p2\p3\p4\p5

;Create custom heart character

Icdwrite pO\pl\p2\p3\p4\p5, [cgram+0,0x00,0x03,0x07 ,0x0F,0x0F,0x1F,0x1F,0x1F]
Icdwrite pO\pl\p2\p3\p4\p5, [0x00,0x00,0x11,0x1B,0x1F,0x1F,0x1F,0x1F]

Icdwrite pO\pl\p2\p3\p4\p5, [0x00,0x18,0x1C,0x1E,Ox1E,0x1F,0x1F,0x1F]

lcdwrite pO\pl\p2\p3\p4\p5, [0x1F,0x0F,0x07,0x03,0x01,0x00,0x00,0x00]

Icdwrite pO\pl\p2\p3\p4\p5, [0Ox1F,0x1F,0x1F,0x1F,0x1F,0x1F,0x0E,0x04]

lcdwrite pO\pl\p2\p3\p4\p5, [0x1F,0x1E,0x1C,0x18,0x10,0x00,0x00,0x00,scrram+0]

Icdwrite pO\pl\p2\p3\p4\p5, [TWOLINE,SCR,0,1,2,scrram+0x40,3,4,5]

end

142

Commands

LCDREAD

Syntax
Icdread RS\ E\ D7\ D6\ D5\ D4 {,RW}, {cgram+} address,
[{modifiers} expression1, ..., {modifiers} expressionN]

* RS - is any expression, constant or variable that specifies the 1/0 pin connected to the LCD’s
R/S pin.

* E - is any expression, constant or variable that specifies an 1/0 pin connected to the LCD’s
enable pin.

« D7 - is any expression, constant or variable that specifies an I/O pin connected to the LCD’s
data bit 7 pin.

* D6 - is any expression, constant or variable that specifies an I/O pin connected to the LCD’s
data bit 6 pin.

* D5 - is any expression, constant or variable that specifies an I/O pin connected to the LCD’s
data bit 5 pin.

* D4 - is any expression, constant or variable that specifies an I/O pin connected to the LCD’s
data bit 4 pin.

* RW - is any expression, constant or variable that specifies an I/O pin connected to the LCD’s
read or write enable pin.

» Cgram - LCDREAD defaults to reading screen ram. CGRAM is an optional argument which
specifies custom character ram (CGRAM). If CGRAM is used the LCDREAD command will return
data store in the CGRAM and not SCRRAM.

* Address - specifies what address to start the read at.

* Modifiers - are any output modifiers as shown in the modifiers section of this manual. They are
used to format the out going data (Hex, Bin, Dec and so on).

» Expression - is any expression, constant or variable that specifies data to be displayed to the Icd
screen.

Supported
* BA - Supported.
* BAN - Supported.
* BAP - Supported.
* BAP40 - Supported.

Description

The LCD commands are setup to work with the Hitachi HD44780 controller. This is probably one
of the most common text LCDs available. 1x16 all the way up to 4x40 size screens are supported.
Before using the LCDREAD command see LCDINIT command.

143

Commands

The LCDREAD command is used to read the memory addresses of the HD44780 ram. The ram
memory map is standard across LCD display sizes. The only difference being what values are actual
display ram and what values are off screen ram. This is outlined in the LCDWRITE section of this
manual under the memory map tables. The LCDREAD command can access both screen ram and
the custom character area (CGRAM).

Example

If you are running a large menu system and some of the information is generated on the fly the
LCDREAD command can be used to retrieve screen data to determine what is being displayed. It can
also be used to temporarily store data in the off screen ram. The following program will read the first
location of screen ram on a 2x16 LCD display.

character var byte
lIcdinit pO\pl\p7\p6\p5\p4,p2

Icdread pO\pl\p7\p6\p5\p4,p2,0,[character]
serout s out, L|)9680,Echaracter, 3]

The next program will read the CGRAM where custom characters are created. Since it takes 8 bytes
to define 1 custom character we will need to read all 8 bytes in and create a variable array to do so.
After reading the first custom character location the program will display the results to a terminal
window connected at 9600 baud.

cch var byte(8)
Icdinit pO\p1\p2\p3\p4\p5, p6

Icdread pO\p1\p2\p3\p4\p5,p6,cgram+0,[cch(0),cch(1),cch(2),cch(3), |
cch(4),cch(5),cch(6),cch(7)]

serout s_out, 19600, [hex cch(0),” “,hex cch(1),” “,hex cch(2),” “,|
hex cch(3),” “,hex cch(4),” “,hex cch(5),” “,hex cch(6),” “,hex cch(7)]

end

144

Commands

LOOKDOWN

Syntax
lookdown value,{operator,} [list],target

e Value - is a variable or constant that will be used to compare to the list.

« Operator - is the comparison operator which defines how value is applied to list. If no operator is
given the default operator is equals (=). Comparison operates are =, <, >, <>, >=, <=,

 List - is any combination of variables, constants or expressions that will be used to compare
against. Variables can be any type variable including floating point, signed, longs.

» Target - is where the result of a comparison are store. The index position of a match from list, is
loaded into target.

Supported
* BA - Supported.
* BAN - Supported.
* BAP - Supported.
* BAP40 - Supported.

Description

The LOOKDOWN command checks through a list of variables or constants looking for the first match
to value using the comparison operator. Each item in list is indexed starting from 0. If you have 10
variable or constants in the list then the expected results will be from 0 to 9.

Notes

1. The LOOKDOWN command will stop on the first result that is true. If there is a possibility that two
or more values in list will return true the LOOKDOWN command returns the first match.

2. The fist item in list has an index value of 0. If the first item is true in list, a 0 is returned.

3. If no results are true then target is left unchanged.

145

Commands

Examples
The LOOKDOWN command can be used to determine the relevance of an unknown value by

comparing it to a known list of known values. An example would be determining a range of something
such as low, medium or high.

Connect to the following program with the terminal window set to 9600 baud. The DEC modifier was
used to convert the variable to real numbers. If the value 1 is sent, the program will return 1:Low.
Since we used the comparison operator less than (<) and equals (=), 1 is less than and not equal to
anything in the list. Type 100 in the terminal window and press enter. 100: Low is returned since 100
is equal to something in the list. If 101 was sent 101: Medium would be returned. 101 is greater than
100 and less than 512. A good programming technique is coding to anticipate errors or unexpected
results. Try sending a value of 1025.

Value Var Long
Target Var Long
Main

Value = 0

Target = 3

Serin S_IN, 19600, [DEC Value]

LOOKDOWN value, <=, [100, 512, 1024], target
IF target = 0 Then

ENDIF erout S _OUT, 19600, [0, DEC value, “ : Low”,13]

IF target = 1 Then }

ENDIE erout S OUT, 19600, [0, DEC value, “ : Medium”,13]

IF target = 2 Then :

ENDIF erout S _OUT, 19600, [0, DEC value, “ : High”,13]

IF target = 3 Then

ENDIE erout S OUT, 19600, [0, DEC value, “ : Out of range”,13]

Goto Main ;Repeat forever

146

Commands

LOOKUP

Syntax
lookup index,[list],target

* Index - is a variable, constant or expression that will be used to select a position in list.

e List - is any combination of variables, constants or expressions. Variables can be any type of
variable including floating point, signed, longs.

» Target - is the variable where the value returned from list is stored.

Supported
* BA - Supported.
* BAN - Supported.
* BAP - Supported.
* BAP40 - Supported.

Description

The LOOKUP command use the index value to locate a value from list and load it into target. Each
item in list is indexed starting from 0. If you have 10 variable or constants in list then index can be a
value from 0 to 9.

Notes
1. The fist item in list has an index value of 0.
2. Ifindex has a value that does match a position in list then target is left unchanged.

Examples

Connect to the following program with the terminal window set to 9600 baud. Enter a value from 0 to
8. The number received will be stored in index. The LOOKUP command will then use this number and
move to that position in the list. The results are loaded into target. In the program there are 9 values
in list. Since the first position is 0, only 0 to 8 are valid input commands. Any other values will leave
target unchanged. For an example of LOOKUP in use see SOUND command example.

;ALL - all_lookup.bas

Index var Word
Target var Word

Main
Index = 0O
Target = 0

serout s_out, 19600,[1, “Type a value from O to 8: “]
Serin s_in, 19600, [dec Index]

lookup Index,[10,20,30,40,50,60,70,80,90],Target

serout s_out, 19600,[0, 13, 13, “Index Position= *“, dec Index]
serout s out, 19600,[13, “Result= “, dec Target,13]

Goto Main

147

Commands

Constant strings can also be used. The following program will print out one character per loop. Since
there is 18 characters we use a for next loop to increment through the LOOKUP list.

;ALL - all_lookup2.bas

index var word
target var byte

main _
serout s out, 19600, [O]

for index = 0 to 17))
lookup index, [*“Basic Micro Rules!’],target

serout s out, 19600, [target]
pause 100

next _

goto main

1485

Commands

LOW

Syntax
low pin

* Pin - is a variable or constant that specifies which pin to go high.

Supported
* BA - Supported.
* BAN - Supported.
* BAP - Supported.
* BAP40 - Supported.

Description

The LOW command is an output command that will set a pin LOW. All pins can be in 3 states. HIGH,
LOW and FLOAT (input). The LOW command will change any of these states to an output and set the
pin LOW (GND)

Notes

1. If a variable is used, the variables value will be directly translated into a pin. If the variable equals
zero then PO will go low. If the value is out of range to the pins that are present nothing will hap
pen. If you have 10 pins and the variable equals 11 then nothing will happen.

Examples

The following program is a simple loop using HIGH and LOW commands that will repeat for ever.
Connect an LED from PO to P7. They will blink in sequence, repeating forever.

Pins var byte

Main

Pins = 0

For Pins = 0 to 7
High Pins
Pause 200
Low Pins
Pause 200

Next }

Goto Main

149

Commands

NAP

Syntax
nap period

» Period - is a variable, constant or expression that determines the duration of nap. Valid range is 0
to7.

Supported
* BA - Supported.
* BAN - Supported.
* BAP - Supported.
* BAP40 - Supported.

Nap Period

Nap Value Time

18ms
36ms
72ms
144ms
288ms
576ms
1152ms
2304ms

N[ojla|bh|lwWwW|N|=~|O

Notes

1. The period can vary slightly with temperature, supply voltage and manufacturing tolerances.

2. The Atom Pro will immediately wake up from a nap if an interrupt occurs.

3. The NAP command does not affect internal registers so your program will continue executing
when the time expires.

Description

The NAP command executes the processor’s internal sleep mode for a specified time (Period). Power
consumption is reduced in sleep mode. NAP is a simplified version of the SLEEP command. NAP

is an easy way to conserver power on battery powered application when the processor is idle. The
AtomPro can conserve power until an outside trigger occurs (Interrupt) to wake the device.

Example
The following example will put the processor in a lower power state for 2,304 milliseconds.

main
serout s out, 19600, [“Going to NAP”
nap 7
serout s_out, 19600, [“1°m wake!]
goto main

150

Commands

OWIN

Syntax
owin pin,mode {FailLabel,} [[modifiers}InData1, ..., {modifiers}IinDataN]

¢ Pin - is a variable, constant or expression that specifies the pin used for 1-wire data transfer.

e Mode - is a variable, constant or expression the specifies the data transfer mode as described in
the table below.

 FailLabel - is a label the program will jump to if communications fails (No Chip present).

» InData - is a list of variables with optional modifiers to store incoming data from an attached
1-wire device.

Supported
* BA - Supported.
* BAN - Supported.
* BAP - Supported.
* BAP40 - Supported.

Modes
Mode Reset Byte / Bit Speed
0 None Byte Low
1 Before Data Byte Low
2 After Data Byte Low
3 Before and After | Byte Low
4 None Bit Low
5 Before Data Bit Low

Description

The 1-wire protocol was developed by Maxim (Dallas Semiconductor). It is a 1 wire asynchronous
serial protocol that does not require a clock. Most 1-wire devices can optionally be powered from the
data line. This is known as parasitic power. This means the device is powered from a extended data
high (1) state on its data pin. A high (1) state is held briefly to charge a small internal capacitor. One
wire is setup to have a single master device which communications with one or more 1-wire devices
over a single data line. This network is dubbed a “MicroLan”. The master initiates and controls all
activities on the 1-wire bus.

Notes
1. The 1-wire parts use CMOS/TTL logic levels with open collector outputs. The data line requires a
4.7K pull-up.

151

Commands

Schematics
The following schematic shows how to wire up a DS1822+ temperature device.

Ul

[P2 DQ vcC i_L
VCC

R1

VCC 4.7K

-

GND
GND DS1822+

Example

This example shows how to read the temperature sensor DS1822+. The commands used for each
1-wire device will differ. To find the list of supported commands for the device being used see the
device data sheet. Wire up the DS1822+ as shown in the schematics. Load the program below and
connect using Studio terminal window at 9600 baud. The program will update the current temperature
reading from the 1-wire part. Place your fingers on the device and watch the temperature reading
increase.

temp var word
convert var float
counter var byte

owout PO,1,main, [$cc,$44]

owin PO,0, 5temp]

if temB then wait

owout PO,1,main, E$cc ,3be]

owin PO,0, [temp yteO, temp bytel]

convert = tofloat temp

serout s_out, 19600,
goto main

Temperature = “,real convert,” C”,13]

If you are only using one device on the MicroLan then you can send a command to skip the unique
ID. Using mode 1 (byte mode, low speed, and reset before data) we send the command $CC (Skip
ROM) which sets the DS1822+ to accept commands regardless of its unique ID code. The next
command is $44 (Convert Temperature) which initiates the temperature conversion and stores the
result in the DS1822’s scratch pad memory.

Using mode 0 (byte mode, low speed, and no reset) we read back the conversion status. While a
conversion is in progress the read will be a 0. When data is ready it changes to a 1. The example
program will loop until a conversion is finished.

Command $CC is sent, then $BE (Read Scratch pad) which tells the DS1822 to send the two bytes
from its scratch pad on the next read. The the two bytes from the DS1820’s scratch pad are read and
stores them in the variable temp. The program makes use of the variable modifiers byte0 and byte1 to
load the word variable temp with the low and high bytes of the temperature.

The program then converts the temperature to floating point format and divides by 2.0 because the
DS1822+’s output is in 0.5°C steps. The result is then sent to a terminal window set to 9600 baud.

152

Commands

owouT

Syntax
owout pin,mode,{NCLabel,}[Data1, ..., DataN]

¢ Pin - is a variable, constant or expression that specifies the pin used for 1-wire data transfer.

e Mode - is a variable, constant or expression the specifies the data transfer mode as described in
the table below.

 FailLabel - is a label the program will jump to if communications fails (No Chip present).

» Datal..Data2 - is a variable, constant or expressions that specifies the data to be send to the
1-wire device.

Supported
* BA - Supported.
* BAN - Supported.
* BAP - Supported.
* BAP40 - Supported.

Modes
Mode Reset Byte / Bit Speed
0 None Byte Low
1 Before Data Byte Low
2 After Data Byte Low
3 Before and After | Byte Low
4 None Bit Low
5 Before Data Bit Low

Description

The information here is duplicated from OWIN. The 1-wire protocol was developed by Maxim (Dallas
Semiconductor). It is a 1 wire asynchronous serial protocol that does not require a clock. Most 1-wire
devices can optionally be powered from the data line. This is known as parasitic power. This means
the device is powered from a extended data high (1) state on its data pin. A high (1) state is held
briefly to charge a small internal capacitor. One wire is setup to have a single master device which
communications with one or more 1-wire devices over a single data line. This network is dubbed a
“‘MicroLan”. The master initiates and controls all activities on the 1-wire bus.

Notes
1. The 1-wire parts use CMOS/TTL logic levels with open collector outputs. The data line requires a
4.7K pull-up.

153

Commands

Schematics
The following schematic shows how to wire up a DS1822+ temperature device.

Ul
R1 3
i P0 >—% DQ vce
47K
VCC 1 GND VCC
GND DS1822+

Example

This example shows how to read the temperature sensor DS1822+. The commands used for each
1-wire device will differ. To find the list of supported commands for the device being used see the
device data sheet. Wire up the DS1822+ as shown in the schematics. Load the program below and
connect using Studio terminal window at 9600 baud. The program will update the current temperature
reading from the 1-wire part. Place your fingers on the device and watch the temperature reading
increase.

temp var word
convert var float
counter var byte

owout PO,1,main, [$cc,$44]

owin PO,0, 5temp]
if temB then wait
owout PO,1

,main, E$cc ,3be]
owin PO,0, [temp yteO, temp bytel]
convert = tofloat temp
serout s_out, 19600,
goto main

Temperature = “,real convert,” C”,13]

If you are only using one device on the MicroLan then you can send a command to skip the unique
ID. Using mode 1 (byte mode, low speed, and reset before data) we send the command $CC (Skip
ROM) which sets the DS1822+ to accept commands regardless of its unique ID code. The next
command is $44 (Convert Temperature) which initiates the temperature conversion and stores the
result in the DS1822’s scratch pad memory.

Using mode 0 (byte mode, low speed, and no reset) we read back the conversion status. While a
conversion is in progress the read will be a 0. When data is ready it changes to a 1. The example
program will loop until a conversion is finished.

Command $CC is sent, then $BE (Read Scratch pad) which tells the DS1822 to send the two bytes
from its scratch pad on the next read. The the two bytes from the DS1820’s scratch pad are read and
stores them in the variable temp. The program makes use of the variable modifiers byte0 and byte1 to
load the word variable temp with the low and high bytes of the temperature.

The program then converts the temperature to floating point format and divides by 2.0 because the
DS1822+’s output is in 0.5°C steps. The result is then sent to a terminal window set to 9600 baud.

154

Commands

OUTPUT

Syntax
output pin

« Pin - is a variable, constant or expression that specifies an output capable pin to use.

Supported
* BA - supported
* BAN - supported
* BAP - supported
* BAP40 - supported

Description

In order for a pin to control something in the outside world we need to set it as an output. When a
pin is set as an output, only then can we specify whether it is high (1) or low (0). All output based
commands will automatically set the pins state. But during start up all pins are in an input state and
after an input command is ran the pin is left in an input state. The OUTPUT command can be used
to set a pin as an output. Typically the OUTPUT statement would be used in the beginning of your
program to set specific pins to known states.

Notes
1. On power, all pins by default are inputs.

Example

Connect to the running program example below using the terminal window set to a baud rate of 9600.
As the program runs it will print the state of pins 0 to the terminal window. P1 is then set high and the
first report is PO set as a 1 (high). Next command sets it to an input and PO is now O (low). P1 is then
set back to an output. Since its last known state was high it will return to this state when set to an
output again so PO will read 1 (high) again. See if you can follow the program flow to see when the
pin state changes.

;Connect pO to pl

Input po)
High pl ;Set P1 to an output and hlgh
Serout s out, 19600, [“PO state is “,dec INO,13]
Pause 1000
Input pl } }
Serout s out, 19600, [“PO state is “,dec INO,13]
Pause 1000
;Set P1 high, will remember its last set state
Output pl))
Serout s out, 19600, [“PO state is “,dec INO,13]
Pause 1000

155

Commands

PAUSE

Syntax
pause time

« Time - is a variable, constant or expression that specifies number of milliseconds to wait.

Supported
* BA - Supported.
* BAN - Supported.
* BAP - Supported.
* BAP40 - Supported.

Description

The PAUSE command is used to create a predetermined delay in a program. The amount of delay
is specified in milliseconds. There are 1000 milliseconds in 1 second. So if a value of 500 is used for
time, it would be a half second. If 1000 is used for time, the program would wait 1 second.

Notes

1. PAUSE is fairly accurate. However over time the count will be off. This will vary from processor to
processor. The Nano uses an internal clock which is less accurate than the external clocks used on
the modules. Therefore the error rate would be higher with the Nano.

Schematic
Connect a LED as shown below. You can substitute the resistor for anything from 330 ohms to 470

ohms.
D1
,
RL 4
_—AM—N—{ GND
390
LED
Example

The following program will blink an led at approximately once second intervals forever or until power
is removed. To increase the speed at which the LED blinks chance both PAUSE time values from
1000 to something smaller.

:Wire LED to PO

Main
High PO
Pause 1000
Low PO
Pause 1000
Goto Main

156

Commands

PAUSEUS

Syntax
pauseus time

e Time - is a variable, constant or expression that specifies the number of half microseconds to
wait.

Supported
* BA - Supported.
* BAN - Supported.
* BAP - Supported.
* BAP40 - Supported.

Description

The PAUSEUS command is used to create a predetermined delay in a program. The amount of delay
is specified in microseconds. The PAUSEUS command differs from the PAUSE command in that

is uses half microsecond increments. There are 1000 microseconds in 1 millisecond. So a value of
2,000,000 would wait a full second. The PAUSEUS command is used when high resolution delays are
required.

Notes
1. PAUSEUS is fairly accurate. The Nano uses an internal clock which is less accurate than the
external clocks used on the modules. Therefore the error rate would be higher with the Nano.

Schematic
Connect a LED as shown below. You can substitute the resistor for anything from 330 ohms to 470

ohms.
D1
W/
R1 4
_—WV—N—1 GND
390
LED
Example

The following program will blink an led at approximately once second intervals forever or until power
is removed. To increase the speed at which the LED blinks chance both PAUSEUS time values from
1000000 to something smaller.

;Wire LED to PO

Main
High PO
Pause 1000000

Low PO
Pause 1000000
Goto Main

157

Commands

PAUSECLK

Syntax
pauseclk time

» Time - is a variable, constant or expression that specifies the number of clock cycles to wait.

Supported
» BA - Supported with timing differences.
* BAN - Supported with timing differences.
* BAP - Supported with timing differences.
» BAP40 - Supported with timing differences.

Description

The PAUSECLK command is used to create a high resolution delay in a program. The delay

is specified in clock cycles. The PAUSECLK command differs from the PAUSE and PAUSEUS
commands in that is uses clock cycles. The clock cycle across processor lines are different so
the same value on one processor applied to another one will change the delay. The PAUSECLK
command can be used in generating precise timing signals.

Notes

1. The Nano processors runs at 8Mhz internally. It takes 4 clock cycles to complete one instruction.
So it runs at 1/4 clock cycles. One millisecond is equal to 2000 clock cycles on the Nano.

2. The BasicATOM processors runs at 20Mhz. It takes 4 clock cycles to complete one instruction.
So it runs at 1/4 clock cycles. One millisecond is equal to 5000 clock cycles on the ATOM.

3. The ATOM Pro runs at 16Mhz. Where the BasicATOM Pro 40 runs at 20Mhz. One millisecond is
equal to 16000 on the ATOM Pro and 20000 on the ATOM Pro 40.

Example

The program below will function slightly differently depending on what processor you are using.
Separate programs have been provided to demonstrate a one seconding timing on all 4 different
processors. The program will print to the terminal window set at 9600 baud. To test the examples only
load the portion that corresponds to the processor you are using.

;Nano pauseclk example

Serout s out, 19600, [“Starting”,13]
Pauseclk 2000000

Eegout s _out, 19600, [*“One second later’]
n

;Atom pauseclk example

Serout s out, 19600, [“Starting”,13]
Pauseclk 5000000

Eegout s _out, 19600, [“One second later’]
n

158

Commands

;AtomPro pauseclk example

Serout s out, 19600, [“Starting”,13]
Pauseclk 16000000

Eegout s _out, 19600, [“One second later’]
n

;AtomPro40 pauseclk example

Serout s out, 19600, [“Starting”,13]
Pauseclk 20000000

Eegout s _out, 19600, [“One second later’]
n

159

Commands

PULSIN

Syntax
pulsin pin, direction, {Tlabel, Timeout,} result

¢ Pin - is variable, constant or expression that specifies the pin to be used for the input pulse.

» Direction - is variable, constant or expression (0 or 1) that specifies the pulse direction start.
If direction is set to 0 a high state will trigger the timer. If direction is set to a 1 a low state will
trigger the timer.

» Tlabel - is an optional argument that specifies a label the program will jump to if a timeout occurs.
If no Tlabel or Timeout value is specified the command will wait about 32ms for a pulse to occur.
If no pulse occurs a result of 0 is returned and program execution will resume.

e Timeout - is variable, constant or expression that specifies the number of microseconds for
a time out. Timeout is a 32-bit integer value (0 - 4,294,967,295). Timeout is measured
in 0.5 microsecond intervals. A timeout of 1000 microseconds would be entered as 2000.

* Result - is a variable that stores the pulse duration in 0.5 microseconds increments. If the result
variable specified is too small only the least significant bits will be stored. If no pulse is detected
within the time out value the result will be set to 0. See the table below for the minimum time
resolution of each processor.

Supported
* BA - Supported.
* BAN - Supported.
* BAP - Supported.
* BAP40 - Supported.

Resolution

Processor Time

BA 1.4us
BAN 3.5us
BAP 1.5us
BAP40 1.5us

Description

PULSIN will measure the time from edge to edge of the pulse. It will start the count on a high to low
transition or a low to high transition depending on what direction is set to. PULSIN measures the
width of the pulse. PULSIN can be used to measure a servo signal or how long a button was press.
PULSIN is a blocking command that will wait for 32ms until a pulse is detected. If no pulse is detected
the command returns a 0 and continues program execution.

Notes

1. Each processor has a differ minimum resolution of time. After the minimum resolution all time
values are added by 0.5us increments.

2. The value stored in result is in 0.5us increments. If 1000 is returned this represents 500us.

160

Commands

Schematics
Connect a momentary switch as shown below. R1 can be a 10K or a 4.7K resistor.

S1

— R1
GND}——o o— PO —w——|vCC
BUTTON 10K

Examples

The example program will time how long a button is pressed, displaying the results to a terminal
window at 9600 baud. The direction is set to 0 since our initial state will be high from the pull-up
resistor.

temp var long

main
pulsin p40,1,main,2000000, temp
serout s out, 19600, [dec temp,13]
pause 100

goto main

The direction 0 or 1 is important. If it is not set correctly the results will not be accurate. If the initial
state is missed PULSIN may not time any pulse. Or time a second pulse as one pulse skewing the
results. The two pulses below illustrate this point.

Initial State 1 (Direction 0)

initia state
if direction=0 timi if direction = 1 timing will start
if dlirection= 0 timi
W"(Qa{oﬁere and o here and ingtruction will time out

pulse will be measured

Initial State O (Direction 1)

initial state

if dlirection= 0 timing will start

if direction= 1 timi
g here and instruction will time out

will start here and
pulse will be measured

161

Commands

PULSOUT

Syntax
pulsout pin, time

e Pin - is a variable, constant or expression that specifies the pin to read a pulse.

e Time - is a variable, constant or expression that specifies the duration of the pulse. Time is
measured in 0.5 microseconds increments. The smallest unit of time differs for each processor

family. See Time Units table.

Supported

* BA - Supported.

* BAN - Supported.
* BAP - Supported.
* BAP40 - Supported.

Time Units

Processor Time

BA 5us
BAN 12us
BAP 3us
BAP40 2.5us

Description

PULSOUT toggles the pin state from high to low to equal one pulses. You can use the high or low
commands to set the initial state of the pin, which controls the polarity of the pulse. The pin will
remain in the last known state after the PULSOUT command has ran. This allows successive use of

the PULSOUT command to produce pulses of the same polarity.

Notes

1. Each processor has a differ minimum resolution of time. After the minimum resolution all time

values are added by 0.5us increments.

2. Temperature will effect the pulse. The affect is greater the closer to the minimum resolution

increments.

162

Commands

Examples

The example program will produce a pulse to that shown below for an initial state of 0. If the “low p0”
is changed to “high p0” the pulse will be similar to that shown for initial state of 1.

The pulse will vary slightly. This will be due to the temperature and other factors such as components
values used to build the BasicATOM or BasicATOM Pro. The closer the desired pulse is to the
minimum resolution the more noticeable the effect. Large values see no loss.

time var word

time=120 ; 0.5us increments, pulse width = 60

main
low pO)
pulsout p0O, time
goto main

Pulse Initial states

Initial state 0

5V
av
3V
2v
i\

ov

4 us per division

5V
4V
3V
2v
1\
ov

Initial state 1

4 us per division

163

Commands

PWM

Syntax
pwm pin, period, duty, cycles

e Pin - is a variable, constant or expression that specifies the pin to use.

» Period - is a variable, constant or expression that specifies the period of the pulse width signal in
half microsecond increments.

» Duty - is a variable, constant or expression that specifies the period of the duty cycle pulse width
signal in half microsecond increments.

e Duration - is a variable, constant or expression that specifies the number of pulses to output.

Supported
* BA - Supported.
* BAN - Supported.
* BAP - Supported.
* BAP40 - Supported.

Description
The PWM command generates a pulse width modulated signal. PWM has several use some of which
are generating an analog voltage, DC motor control, servo control or generating a frequency.

To create an analog voltage the pin is switched from high to low. During the transitions leaving the
pin high for a certain amount of time versus low and then averaging the output will cause a voltage
change. If the pin was high (5V) 50% of the time and then low (0V) the other 50% the voltage output
would be around 2.5V. By adjusting how long the pin is high or low we can control the output voltage
with a simple RC circuit.

Schematic

The schematic is a simple RC filter. The resistor and capacitors values can be changed to affect the
final output.

—Cour

The code snippet will generate a 50% duty cycle. Which, with no load, will output 2.5V on the output
side of our RC filter. Build the circuit, run this program and attach a volt meter probe to the output. Try
adjusting the duty cycle to see the results.

pwm p0,1000,500,1000

164

Commands

Duty Cycle

The following chart is what the signal would look like on an oscilloscope at specific duty cycles. This
will give you an idea of what the duty cycles look like. You can see their on times. More on time would
mean more charge for our RC circuit which would increase its output voltage. At 0% duty cycle the pin

is always low. At 100% duty cycle the pin is always high.

0%

10%

25%

50%

75%

100%

Duty Cycles

i —

.
I I
J u U

=L 5L

165

Commands

RCTIME

Syntax
rctime pin,state {tlabel,timeout,}result

e Pin - is a variable, constant or expression that specifies the pin to use.

e State - is a variable, constant or expression (1 or 0) that specifies the state which will end the
timing period.

» Tlabel - is an optional argument that specifies a label the program will jump to if no transition
occurs. If Tlabel and timeout are not specified, RCTIME will wait 32ms for a transition to occur. If
no transitions occurs 0 is returned and program execution will resume.

e Timeout - is variable, constant or expression that specifies the number of microseconds for
a time out. Timeout is measured in 0.5 microsecond intervals. A timeout of 1000 microseconds
would be entered as 2000.

* Result - is a variable that stores the pulse duration in 0.5 microseconds increments. If the result
variable specified is too small only the least significant bits will be stored. If no pulse is detected
within the timeout value the result will be set to 0. See the table below for the minimum resolution
of each processor.

Supported
* BA - Supported.
* BAN - Supported.
* BAP - Supported.
* BAP40 - Supported.

Resolution

Processor Time

BA 4.2us
BAN 10.5us
BAP 4.5us
BAP40 4.5us

Description

RCTIME is typically used to measure the charge and or discharge time of a resistor / capacitors
circuit. It can also be used in precise triggered timing measurements like ultra sonic sensors. When
using RCTIME with an R/C circuit it can measure the amount of time the capacitor takes to discharge.
RCTIME is a blocking command and will wait for a transition to occur before continue program
execution unless a timeout is set.

Notes

1. RCTIME can only measure up to its maximum value, 4,294,967,295.

2. Each processor has a minimum measurement resolution. The example program is timed for the
BAP.

3. Analog should be measured using the ADin command.

166

Commands

Schematic

The schematic can use any value capacitor. Two different values are shown. The resistor must be a
10K in order for the sample program to work properly.

RL. 10K R1,., 10K
+
< po A4 (——deno P +—{——onp
c1 10uF Cl 0.1uF

Example

The example program will measure the discharge rate of a capacitor and determine is value. This
is possible since we use a known resistor value of 10K. RCTME can also be used to calculate a
resistor or a potentiometer value by using a known capacitance and changed the formula used to
calculate RC. The pin is first set to an output and high. The small pause allows the capacitor time to
fully charge. The RCTime command will then count how long it takes for the capacitor to discharge

through a 10K resistor. When the capacitor voltage level falls below the TTL threshold of a logical 0,
RCTIME will return the result.

capacitance var float
results var long

main
pause 320 ;charge for 1 second _ _ _
rctime PO, 0, NoTime, 2000000, results ;result is time In .5us

high PO
capacitance = TOFLOAT(results) / 12800.0
serout s out, 19600, [“Time = “,dec results/2,”us “, real
capacitance\3,”uF”, 13]
goto main
NoTime
serout s_out, 19600, [“RCTIME timed out!”, 13]
goto main

The program sets PO to output, high state, and then waits one second for the capacitor to charge fully.
The RCTIME command then changes PO to an input and waits for a low state, which occurs when the
capacitor discharges to about 0.8V. The time, in microseconds, is stored in the results variable.

The resistance is then calculated using the formula: resistance = results/(1.83 * capacitance)
However, to accommodate the integer arithmetic, the 1.83 and capacitance are each multiplied by
100 (giving 183 and 2, respectively), so the numerator must be multiplied by 10000 to compensate.

If you see the RCTIME timeout error message, then the capacitor is too large for the program or you
have something wired wrong.

167

Commands

Example

The next example is a small game that can be played by connecting a button as show to PO. Its a
reaction time game. See how fast you can get. Use the button schematic shown with the following
example program to play the game.

S1

L R1
GNDf——o o— PO »—w——vCC
BUTTON 10K

temp var long

main
ifT INO=0 then
serout s _out, 19600, [“Please release the button to continue.”,13]
endif
while INO=0
wend

serout s out, 19600, [“Get ready”,13]
pause 1000

serout s _out, 19600, [“Get set”,13]
pause 1000

serout s _out, 19600, [“GOI'T1” 13]
rctime p0,0,timeout,200000000, temp

serout s _out, 19600, [“Your time was:”,real TOFLOAT(temp)/2000000.0\4,” seconds’”,13]
pause 2000

goto main
timeout

serout s _out, 19600, [“You waited too long. Starting over.”,13]
goto main

165

Commands

READ

Syntax
read address, databyte

* Address - is a byte sized variable or constant that specifies what address to read the on board
eeprom from.

» DataByte - is a byte sized variable (0-255) which stores the data returned from the on board
EEPROM.

Supported
* BA - supported
* BAN - supported
* BAP - supported
* BAP40 - supported

Description

All modules except the BasicATOM Pro 24 and BasicATOM Pro ONE come with built in eeprom. The
READ / WRITE commands were created to access the built in memory. READ will read a single byte
from the built in eeprom at the address specified in the command.

Notes

1. The AtomPro24 does not have built in eeprom. An external 32kbit or larger eeprom can be added.
Connect the eeprom SCL pin to P10 and the eeprom SDA pin to P11 with a 10K pull up resistor.
The address pins on the eeprom (A0,A1 and A2) are tied to ground.

2. READ will only read one byte at a time. To read multiple locations a simple loop can be used or
see READDM.

Example
The example program will write the string “Hello” starting at the first location to the on board eeprom.
Next, it will read the eeprom locations 0 to 10 and print the contents to the terminal window.

index var byte
char var byte

write 0,”H”
write 1,7e”
write 2,71~
write 3,71
write 4,”0”

for index = 0 to 10

read index,char

serout s out, 19600, [char]
next
end

169

Commands

READDM

Syntax
readdm address,[{modifiers}databyte1, ..., {modifiers}databyteN]

» Address - the starting address of the onboard eeprom to read from.

» DataByte - is a list of variables with optional modifiers in which data read from
the eeprom will be stored in.

» Modifiers - are used in the command syntax to format data. Refer to the modifier section of this
manual. All input modifiers are supported.

Supported
* BA - supported
* BAN - supported
* BAP - supported
* BAP40 - supported

Description

The READDM differs from the READ command in that it auto increments to the next read address.

It can be ran once and read multiple bytes from the onboard eeprom using only a starting address.
READDM will continue to read based on how many variables are specified. Modifiers can be used to
format the data or add functionality to the command. See table above.

Notes

1. The AtomPro24 does not have built in eeprom. An external 32kbit or larger eeprom can be added.
Connect the eeprom SCL pin to P10 and the eeprom SDA pin to P11 with a 10K pull up resistor.
The address pins on the eeprom (A0,A1 and A2) are tied to ground.

2. The ReadDM command differs from the Read command in that it auto increments the address. It
can read multiple bytes each time it is executed. The Read command can only read one byte
each time it is executed.

Example

The example program will first write the string “Hello” using Writedm to the on board eeprom. Next,
it will read the eeprom locations starting from 0 using Readdm. It will continue to read starting at
location 0 until all specified databytes are loaded. Run the program once, then comment out the
Writedm command. The on board eeprom will retain all the data last written to it.

;Program will not work with BasicATOM Pro 24.

writedm O, [“Hello world]

readloop
index var byte
string var byte(11) _
readdm index, [str string\11]
: serout s out, 19600, [str string\11]
en

170

Commands

REPEAT - UNTIL

Syntax
repeat

program statements
until condition

» Statements - any group of commands to be run inside the loop.
e Condition - can be a variable or expression

Supported
* BA - Supported.
* BAN - Supported.
* BAP - Supported.
* BAP40 - Supported.

Description

The REPEAT - UNTIL loop executes commands nested inside of it until some condition is false. This
is the opposite of DO - WHILE and WHILE - WEND. The condition can be any variable or expression
and is tested every loop until true.

Notes

1. In the programming world 0 is consider false. By default REPEAT - UNTIL will test this condition. If
a stand alone variable is used for the test, the loop will continue until its value NOT equal to 0.

2. WHILE - WEND checks the condition first. If the condition is false the WHILE - WEND statements
and all program code nested within them will not run.

3. You can nest multiple REPEAT - UNTIL commands within each other. You can nest DO - WHILE or
WHILE - WEND loops within a REPEAT - UNTIL loop.

Example

Connect to the following program with the terminal window set to 9600 baud. The program will
start counting up from 0 to 100. Once index reaches a value of 101 the condition is no longer false.
The greater than symbol > was used for the condition and 101 is now greater than 100 making the
condition true. Since REPEAT - UNTIL loops while a statement is false the program exits.

;ALL - all_repeat _until.bas
Index var word
Main

Index = 0

Repeat

index = index + 1

;lets print the value index }
serout s out, 19600,[0, “Couting: “, dec index]
pause 75

Until index > 100 ;run until index is greater than 100

serout s_out, 19600, [13, “My condition is no longer false.”]

serout s out, 19600, [13,13, “Index = “, dec index]
serout s_out, 19600, [13, “Index is now greater than 100"]

End

171

Commands

RETURN

Syntax
return {DataResult}

» DataResult - an optional value to return to the gosub statement. Can be an expression, constant
or variable.

Supported
* BA - Supported.
* BAN - Supported.
* BAP - Supported.
* BAP40 - Supported.

Description

RETURN removes from the stack the address stored by GOSUB, and resumes program execution
on the line following the calling GOSUB command. A return value may optionally be returned to the
calling GOSUB.

The GOSUB command will jump to a specified label. After executing the code at the jump label a
RETURN command is then used to return the program to the next command after the last called
GOSUB.

If you are familiar with some BASIC languages there is typically a limit to what is called nesting. This
is where multiple GOSUB...RETURN statements are nested inside of each other. The only limit to
MBasic is the available stack ram on the MCU that is in use.

GOSUB stores the address of the next command on the stack and jumps to the specified label. User
specified arguments can be defined in the subroutine and a return value from the subroutine called
can be stored in variable that is then loaded into the GOSUB DataResult argument.

Notes

1. Subroutines should exit via the RETURN command, which clears the saved address from the
stack and returns to the command following the GOSUB. Do not use BRANCH or GOTO when
exiting a subroutine.

2. User defined arguments must match the number of arguments defined at the subroutine. If they
do not match, a stack overflow or underflow will happen.

3. If subroutines returns a value the GOSUB is not required to use it or specify a return value variable

172

Commands

Example

The below program will print the results to the terminal window at 9600 baud. The results will be 110.
The GOSUB command has two arguments and includes a DataResult variable. The values 10 and
100 are passed to the subroutine MyAdd. The values are then loaded into the variables argl and
arg2. Since RETURN can have an expression the variables argl and arg2 are added and returned to
the variable result.

Result var long

Main
Gosub myadd[10,100],result
_ Serout s out, 19600, [“Result =",dec result]
n

Argl var long
Arg2 var long

MyAdd [argl,arg2]
Return argl+arg2

See Also:
GOSuUB
EXCEPTION

173

Commands

REVERSE

Syntax
reverse pin

* Pin - is any expression, constant or variable that specifies a pin to use.

Supported
* BA - Supported.
* BAN - Supported.
* BAP - Supported.
* BAP40 - Supported.

Description

REVERSE will switch the input/output direction of a pin. If pin was an input it would reverse to an
output. If the pin was an output it would reverse to an input. A pins state determines whether it can be
read or set. To read a pin and determine if it has a high (1) or low (0) signal applied to it, the pin must
be set to an input. A pin can only be set to high (1) or low (0) if the pin is in an output state.

Schematic
Connect a LED as shown below. You can substitute the resistor for anything from 330 ohms to 470
ohms.

D1
/
R1 /
_—'\Nv—’l—{.::- 30 GND

LED

Example

The program turn the LED on using the High command which is an output command. Then the LED
will turn off using the Reverse command which changes PO from an output to an input. When PO is an
input the internal circuitry is disconnected and the pin can no longer supply the 5V need to illuminate
the LED.

Loop
High pO
Pause 500
Reverse 80
Pause 50
Goto Loop

174

Commands

SERIN

Syntax
serin rxpin{\fpin},baudmode,{plabel,}{timeout,tlabel,}
[{modifiers} InputData1, ..., {modifiers} InputDataN]

* Rxpin - is a variable, constant or expression that specifies the receive data pin. This pin will
switch to input mode and remain in that state at the end of the command.

 \fpin - is an optional variable, constant or expression that specifies a pin for flow control (the “\”
is required). Flow control is used primarily with PC COM ports and conforms to RS232 serial port
specifications. The flow control pin will switch to output mode and remain in that state at the end
of the command.

* Baudmode - is a 32 bit variable, constant or expression that specifies how fast to receive data
and in what format. Several predefined baud modes are available however custom modes are
allowed. See the baud mode table for predefined modes.

* Plabel - is an optional label. The program will jump to plabel if parity is used and there was a
parity error.

e Timeout - is an optional 32 bit variable, constant or expression that specifies the time to wait for
incoming data. The value is measured in 0.5 microsecond increments If data does not arrive
within this time, the program will jump to tlabel.

e Tlabel - is an optional label the program will jump to if a timeout is specified and has occurred.

* InputData - is a list of variables or constants that tell SERIN what to do with incoming data. The
incoming data can be formatted with optional input modifiers. See the Modifier section of this
manual.

Supported
* BA - Supported.
* BAN - Supported.
* BAP - Supported.
* BAP40 - Supported.

Description

The SERIN command is designed to work with the RS232 serial specifications. The command is bit
banged, which means they are created in software running on the processor. When SERIN is ran the
processor can not do anything but receive data.

RS232 is a simple communication format supported by the PC and is referred to as a COM port. The
COM port can send and receive data simultaneously with each being a separate circuit that works in
only one direction. Each circuit can function independently to transmit and received data at the same
time. This means the COM port is full duplex. The SERIN command is not capable of full duplex since
it is software based.

A 12 volt system was develop to work over long wire lengths and electrically noisy environments. The
low state (0) is defined by +3 to +12 volts while a high state (1) is defined by a -3 to -12 volts. Modern
computer equipment ignores the negative level and accepts a zero voltage level as a 1. This means
circuits powered by 5V are capable of driving RS232 circuits directly, however, the overall range that
the RS232 signal may be transmitted and received is dramatically reduced.

175

Commands

All of the Basic Micro modules have specific pins meant to interface directly to a RS232 COM port

on any device. These pins are labeled SIN / SOUT and have a circuit to handle the -12V and +12V
signals. The SERIN / SEROUT commands will work with any pin. However connecting a standard 1/0
pin directly to a 12V circuit would damage the I/O.

The Nano and BasicATOM Chips require a translation circuit like the one shown below. This circuit
uses a standard IC that is made to interface to RS232 COM ports. Mostly commonly a PC COM port.
Most of the development boards meant for these chips will either have an RS232 translation circuit
like the one below or will have a USB translation circuit. The Nano USB programmer can also be
used as a simple USB translation circuit to any of the pins for communication.

Schematic

The schematic is a standard circuit for RS232 interface. It uses a MAX232A version. This version
requires only .1uf caps. A cheaper alternate to the MAX232A is a HIN232ACN. The RES pin should
be connected to the reset (RES) pin of the micro. The T2IN connected to PO will be the receive (RX)
pin. The R20UT pin connected to P1 is the transmit (TX) pin. The circuit below or one like it should
be used when interfacing generic 1/0 pins to a PC COM port.

VCC ca
T Auf 5
'H }—{vss 1
>— DCD
51 RX
T TX
=— DTR
VSSp——— Vss
c1 J/ : DSR
1uf e N L RTS
: Auf 232ACN 8 | cre
VSS VCC 12 RLIN &30 RLOUT 32 9 | RING
= R2IN € R2oUT I 550
5o TLIN TLOUT &=
T2IN T2 0UT
1) 4
ci+ 2 C2+ |
c3 Slci- & c2- 2
duf - C5
J Auf
wn
—

VSS

Baud Modes

The baud modes define how SERIN / SEROUT operate. There are two parts to a predefined baud
mode. The first part indicates the mode in which to receive or send the data. The second part defines
the rate (speed) the data is sent or received. An example would be n9600. The N being the mode and
the 9600 being the speed.

The two main modes supported are non inverted (N) and inverted (1). Inverted (l) is typically required
when a translation circuit is used since the signal will be inverted. When the SIN / SOUT pins are
used inverted will typically be used. If a standard 1/O pin is used with no translation circuit non
inverted (N) is typically used. Inverted or non inverted modes default to 8 bits, no parity bit and 1 stop
bit. This means 8 bits of data will be sent or received without parity and with 1 stop bit which indicates
the end of the 8 bits.

176

Commands

Parity

Parity is used to determine if there was a communication error. If parity is set using a predefine
mode like |IE (Inverted, even parity, 7 data bits) then the plabel is required. If an error is detected the
command will exit and jump to plabel. The parity system is very rudimentary but in some situations is
a better than nothing approach. The parity works by truncating the 8 data bits to 7 bits (0 to 127 for
printable text characters). Even parity simple looks for an even amount of 1s received in the 8 bits.

Since the data is truncated to 7 bits the 8th bit is used to ensure there is always an even number of
1s. If the value being sent has three 1s in it, then the 8th bit is set to a 1 to make the total number of
ones four which is even. If there were only two 1s in the value being sent then the 8th bit would be 0
since two 1s would be an even amount.

Supported Modes

Mode Description

| Inverted.

N Non Inverted

IE Inverted, Even Parity.

NE Non Inverted, Even Parity.

10 Inverted, Open Drain.

NO Non Inverted, Open Drain.

IEO Inverted, Even Parity, Open Drain.
NEO Non Inverted, Even Parity, Open Drain.

Baud Rates

The rate determines how fast the data is transmitted. A fairly standard speed is 9600. This means
9,600 bits per second will be sent or received. There are several predefined speeds. However
custom ones can be created. Custom speeds allow SERIN / SEROUT to work with just about any
RS232 devices. On occasion you do find devices you may want to interface with that support odd ball
speeds. MBasic can easily support these by defining your own baud modes.

There are some limits with the SERIN / SEROUT commands. There is allot going on when SERIN is
ran, so the max speed at which they can receive or send serial data is limited. The Nano is limited to
a maximum speed of 38400. The BasicATOM Pro can handle speeds over 115200.

The predefined modes are listed below. The are used in combination with the predefined modes. An
example would be n9600, i38400, ieo1200 and so on.

Predefined Baud Rates

Predefined Rate Predefined Rate Predefined Rate
300 16800 115200

600 19200

1200 21600

2400 24000

4800 28800

7200 31200

9600 33600

12000 38400

14400 57600

177

Commands

Limitations

The Nano maximum baud mode is 38400. The BasicATOM is limited to 57600 and the BasicATOM
Pro support over 115200. These are standard PC COM port baud rates. Since the SERIN command
is software based it will not exit unless the data it is waiting for is received or the timeout option is
specified. The timeout option will wait the time specified and then jump to the timeout label if nothing
has been received.

Modifiers

The SERIN command will store the ASCII value of a character received. If a capital “A” is received a
value of 65 is stored. Since the value is stored as binary it can be read back in decimal, hexadecimal
or binary. Any character received is store as the ASCII equivalent value. Characters are case
sensitive. “A” will have a different value from “a”. See the ASCII table in this manual. In some cases
you may want to send or receive hexadecimal values or raw binary. Modifiers allow you to format the
data.

Input Modifiers

Name Description

DEC Decimal.

SDEC Signed decimal.

HEX Hexadecimal.

SHEX Signed hexadecimal.

IHEX Indicated ($) hexadecimal.

ISHEX Signed and indicated ($) hexadecimal.

BIN Binary.

SBIN Signed binary.

IBIN Indicated (%) binary.

ISBIN Indicated (%) and signed binary.

REAL Floating point number with decimal point.

STR Read specified amount of characters and store in an array.
SKIP Skip specified amount of characters.

WAIT Wait for specified amount of characters.

WAITSTR Compares specified amount of characters to array.

The DEC/Hex/BIN modifiers will store all incoming numeric values as their binary equivalents.
However the DEC/HEX/BIN modifiers will ignore all preceding non-numeral character data and the
commands will exit on the first non-numeral character received after it received numeral characters.
The example below will read in one byte and store it in MyData. If a “1A” is received the command
stores a “1” and exits when it receives the “A” since we only were looking for a number. If an “AA” was
sent it would ignore both and continue to wait for numeral characters.

MyData var _byte
serin p0, 19600, [DEC MyData]

In some case you may want to wait for a specific string of text. This is done with the WAIT modifier.
This example will wait until the exact string of characters, “TEXT”, is received. The quotes
designate ASCII characters. One or more characters can be specified.

MyData var byte
serin p0, 19600, [WAIT (“TEXT)]

178

Commands

In other cases you may want to ignore most of the incoming data and receive only a specific value in
a sequence. The SKIP modifier will allow you to ignore as much incoming data as specified before
reading a value. The example will skip the first 3 values received and exit on the 4th value. If the word
“TEXT” is sent the character “T” would be stored in MyData.

MyData var _byte
serin p0, 19600, [SKIP 3 MyData]

For an example of how all input modifiers work see the modifier section of this manual. The modifiers
work the same regardless of what command they are used in.

Notes

1. The Nano maximum baud rate is 38400.

2. BasicATOM maximum is 57600 and the BasicATOM Pro maximum baud rate is over 115200.

3. When SERIN is running the processor can not do anything else. If SERIN is not running and data
is received it will be ignored/lost.

Examples

This example is meant to work with a Basic Micro development board using the SIN / SOUT pins.
This setup requires no wiring it use the default configuration. Simply power up the board and plug in
the USB or Serial port.

The following program will return the ASCII value in decimal and hexadecimal of any character you
send to it. Once you have the program loaded connect to it with the terminal window built into Studio.
Connect using 9600 baud. Type the capital letter “A” in and you should receive a hex value of 0x41
and a decimal value of 65.

temp var byte

main

serin s_in,i9§00,5temp]

serout s_out, 19600, [0,temp,” = Hex:0x’,hex2 temp\2,” Dec:*,dec temp]
goto main

179

Commands

SEROUT

Syntax
serout txpin{\fpin},baudmode {pace,}{timeout,tlabel,}
[{modifiers} OutputData1, ..., {modifiers} OutputDataN]

e Txpin - is a variable, constant or expression that specifies the transmit data pin. This pin will
switch to output mode and remain in that state at the end of the command.

 \fpin - is an optional variable, constant or expression that specifies a pin for flow control (the “\”
is required). Flow control is used primarily with PC COM ports and conforms to RS232 serial port
specifications. The flow control pin will switch to input mode and remain in that state at the end
of the command.

* Baudmode - is a 32 bit variable, constant or expression that specifies how fast to receive data
and in what format. Several predefined baud modes are available however custom modes are
allowed. See the baud mode table for predefined modes.

» Pace - is an optional variable, constant or expression that specifies the length of an added pause
in between transmitting bytes. Pace can not be used with Timeout and Fpin. Pace is expressed
in .5us increments.

* Timeout - is an optional 32 bit variable, constant or expression that specifies the time to wait for
Fpin before jumping to Tlabel. The value is measured in 0.5 microsecond increments If Fpin does
not grant permission to send within this time, the program will jump to tlabel.

e Tlabel - is an optional label the program will jump to if Fpin and timeout are given and the amount
of time specified has elapsed.

» OutputData - is a list of variables or constants that tell SERIN what to do with incoming data. The
incoming data can be formatted with modifiers. See the Modifier section of this manual.

Supported
* BA - Supported.
* BAN - Supported.
* BAP - Supported.
* BAP40 - Supported.

Description

The SEROUT command is designed to work with the RS232 serial specifications. The command is bit
banged, which means they are created in software running on the processor. When SEROUT is ran
the processor can not do anything but transmit data.

RS232 is a simple communication format supported by the PC and is referred to as a COM port. The
COM port can send and receive data simultaneously with each being a separate circuit that works in
only one direction. Each circuit can function independently to transmit and received data at the same
time. This means the COM port is full duplex. The SEROUT command is not capable of full duplex
since it is software based.

A 12 volt system was develop work over long wire lengths and electrically noisy environments. The
low state (0) is defined by +3 to +12 volts while a high state (1) is defined by a -3 to -12 volts. Modern
computer equipment ignores the negative level and accepts a zero voltage level as a 1. This means
circuits powered by 5V are capable of driving RS232 circuits directly, however, the overall range that
the RS232 signal may be transmitted and received is dramatically reduced.

180

Commands

All of the Basic Micro modules have specific pins meant to interface directly to a RS232 COM port

on any device. These pins are labeled SIN / SOUT and have a circuit to handle the -12V and +12V
signals. The SERIN / SEROUT commands will work with any pin. However connecting a standard 1/0
pin directly to a 12V circuit would damage the I/O.

The Nano and BasicATOM Chips require a translation circuit like the one shown below. This circuit
uses a standard IC that is made to interface to RS232 COM ports. Mostly commonly a PC COM port.
Most of the development boards meant for these chips will either have an RS232 translation circuit
like the one below or will have a USB translation circuit. The Nano USB programmer can also be
used as a simple USB translation circuit to any of the pins for communication.

Schematic

The schematic is a standard circuit for RS232 interface. It uses a MAX232A version. This version
requires only .1uf caps. A cheaper alternate to the MAX232A is a HIN232ACN. The RES pin should
be connected to the reset (RES) pin of the micro. The T2IN connected to PO will be the receive (RX)
pin. The R20UT pin connected to P1 is the transmit (TX) pin. The circuit below or one like it should
be used when interfacing generic 1/0 pins to a PC COM port.

vee c4
- Auf 5
H }—{vss 1
5— DCD
= RX
T TX
—— DIR
VSS——3— Vss
c1 P 6 | bsr
1uf c2 ~|o|S U1 ! | RTS
: 1uf 232ACN 8 ore
13 12 9
RLIN <O RLOUT RING
=
vss vee Se raiN 778 R2ouT 55
—7= TLIN TLOUT P
PO > T2IN T2 0UT
1 [a) 4
e+ 2 C2+ 1
3 8 lci- & c2- 2
1uf : cs
Auf
=
VSS

Baud Modes

The baud modes define how SERIN / SEROUT operate. There are two parts to a predefined baud
mode. The first part indicates the mode in which to receive or send the data. The second part defines
the rate (speed) the data is sent or received. An example would be n9600. The N being the mode and
the 9600 being the speed.

The two main modes supported are non inverted (N) and inverted (1). Inverted (l) is typically required
when a translation circuit is used since the signal will be inverted. When the SIN / SOUT pins are
used inverted will typically be used. If a standard 1/O pin is used with no translation circuit non
inverted (N) is typically used. Inverted or non inverted modes default to 8 bits, no parity bit and 1 stop
bit. This means 8 bits of data will be sent or received without parity and with 1 stop bit which indicates
the end of the 8 bits.

161

Commands

Parity

Parity is used to determine if there was a communication error. If parity is set using a predefine
mode like |IE (Inverted, even parity, 7 data bits) then the plabel is required. If an error is detected the
command will exit and jump to plabel. The parity system is very rudimentary but in some situations is
a better than nothing approach. The parity works by truncating the 8 data bits to 7 bits (0 to 127 for
printable text characters). Even parity simple looks for an even amount of 1s received in the 8 bits.

Since the data is truncated to 7 bits the 8th bit is used to ensure there is always an even number of
1s. If the value being sent has three 1s in it, then the 8th bit is set to a 1 to make the total number of
ones four which is even. If there were only two 1s in the value being sent then the 8th bit would be 0
since two 1s would be an even amount.

Supported Modes

Mode Description

| Inverted.

N Non Inverted.

IE Inverted, Even Parity.

NE Non Inverted, Even Parity.

10 Inverted, Open Drain.

NO Non Inverted, Open Drain.

IEO Inverted, Even Parity, Open Drain.
NEO Non Inverted, Even Parity, Open Drain.

Baud Rates

The rate determines how fast the data is transmitted. A fairly standard speed is 9600. This means
9,600 bits per second will be sent or received. There are several predefined speeds. However
custom ones can be created. Custom speeds allow SERIN / SEROUT to work with just about any
RS232 devices. On occasion you do find devices you may want to interface with that support odd ball
speeds. MBasic can easily support these by defining your own baud modes.

There are some limits with the SERIN / SEROUT commands. There is allot going on when SERIN is
ran, so the max speed at which they can receive or send serial data is limited. The Nano is limited to
a maximum speed of 38400. The BasicATOM Pro can handle over 115200.

The predefined modes are listed below. The are used in combination with the predefined modes. An
example would be n9600, i38400, ie01200 and so on.

Predefined Baud Rates

Predefined Rate Predefined Rate Predefined Rate
300 16800 115200

600 19200

1200 21600

2400 24000

4800 28800

7200 31200

9600 33600

12000 38400

14400 57600

162

Commands

Limitations

The Nano maximum baud mode is 38400. The BasicATOM maximum is 57600 and the BasicATOM

Pro supports over 115200. These are standard PC COM port baud rates.

Modifiers

In some cases you may want to send or receive hexadecimal values or raw binary. Modifiers allow

you to format the data.

Output Modifiers

Name Description

DEC Decimal.

SDEC Signed decimal.

HEX Hexadecimal.

SHEX Signed hexadecimal.

IHEX Indicated ($) hexadecimal.

ISHEX Signed and indicated ($) hexadecimal.
BIN Binary.

SBIN Signed binary.

IBIN Indicated (%) binary.

ISBIN Indicated (%) and signed binary.

REP Repeat character n times.

REAL Floating point number with decimal point.
STR Read specified amount of characters from an array.

Terminal Window

Basic Micro Studio has 4 built in terminal windows. The windows support formatting commands.
These commands control the cursor positioning and other functions. The example shown will clear

the screen and move the cursor to the home position before the word “Test” is printed.

serout s out, 19600, [0,”Test’]

Terminal Window Commands

Decimal Character Command Description

0 CLS Clears the screen.

1 HOME Moves cursor home.

3 MOVE LEFT Moves cursor left.

4 MOVE RIGHT Moves cursor right.

5 MOVE UP Moves cursor up.

6 MOVE DOWN Moves cursor down.

7 BELL Make sound on PC.

8 BACK SPACE Moves cursor back and delete.
9 HANDLE TAB Add a standard tab.

10 LINEFEED Move cursor to next line.

11 CLEAR RIGHT Clear anything to the right of the cursor.
12 CLEAR DOWN Clear anything below the cursor.
13 CARRIAGE RETURN Move to the next line.

183

Commands

Notes

1. The Nano maximum baud rate is 38400.

2. The BasicATOM maximum is 57600 and the BasicATOM Pro maximum baud rate is over 115200.
3. When SEROUT is running the processor can not do anything else.

Examples

This example is meant to work with a Basic Micro development board using the SIN / SOUT pins.
This setup requires no wiring it use the default configuration. Simply power up the board and plug in
the USB or Serial port.

The following program will return the ASCII value in decimal and hexadecimal of any character you
send to it. Once you have the program loaded connect to it with the terminal window built into Studio.
Connect using 9600 baud. Type the capital letter “A” in and you should receive a hex value of 0x41
and a decimal value of 65.

temp var byte

main

serin s_in, 19600, [temp]

serout s_out, 19600, [0,temp,” = Hex:0x,hex2 temp\2,” Dec:*,dec temp]
goto main

Examples

This example shows how to use the string modifier. We setup an array, load it with the text string
“Hello World”. The SEROUT command with the string modifier will increment through the variable
array and send the character from each position in the array. Connect to this program with the
terminal window at 9600 baud to see the results.

string var byte(20)
string = “Hello World”,0

main
serout s_out, 19600, [str string\20\0,13]

goto main

184

Commands

SERVO

Syntax
servo pin,pos{,repeat}

e Pin - is a variable, constant or expression that indicates what processor pin to use.

e Pos - is a variable, constant or expression that indicates servo position. The value used must be
signed to indicate left or right swing. Valid real world ranges are +/- 3000 with 0 being center. The
ranges will vary from servo to servo.

* Repeat - is a variable, constant or expression that is optional and specifies how many times
a pulse is repeated before exiting the command. A repeat value of 0 is a special case and will
only wait until the high side of the pulse is finished before resuming normal program execution.

Supported
* BA - Supported.
* BAN - Supported.
* BAP - Supported.
* BAP40 - Supported.

Description

The SERVO commands will generate pulses to control a standard R/C hobby servo. The range is
-3000 to +3000. Most servos will run from -2200 to +2200. Center is typically 0. The command is a
blocking command and will wait until the pulse is finished.

The repeat argument can be used to drive up to 6 servos by setting it to 0. The time it takes to update
6 SERVO commands in a row with repeat = 0 is about 18ms. Leaving time for the program to perform
additional tasks before more servo pulses need to be sent.

Notes

1. Setting the repeat argument to 0 means this servo command will output 1 pulse and continue on to
the next command without waiting for the low part of the pulse to finish

2. Setting the repeat argument to 1 or more will cause the SERVO command to output the pulse the
number of times value is set to. Repeat = 20 would generate 20 pulses and take 400ms.

Examples

The program demonstrates how to update more than one servo at a time using the optional repeat
argument. Setting the first repeat to 0 will allow the second SERVO command to run while the first would
normally be waiting for the low side of its pulse to finish. Each servo command takes approximately 3ms
when repeat is 0 so we need a pause after them to add up to approximately 20ms total.

pos var sword

main

for pos = -500 to 500
servo p0,pos,0
servo pl,-pos,0
pause 14

next

for pos = -500 to 500
servo p0,-pos,0
servo pl,pos,0
pause 14

next)

goto main

165

Commands

SHIFTIN

Syntax
shiftin dpin,cpin,mode,[InputData1{\bits}, ..., InputDataN{\bits}]

» Dpin - is a variable, constant or expression that specifies the Data input pin. This pin will switch
to an input pin.

* Cpin - is a variable, constant or expression that specifies the Clock output pin. This pin will switch
to an output.

* Mode - is a value (0 to 7) or a predefined constant that sets the incoming data conditions.

 InputData - is a variable where incoming data is stored. The only limit to the amount of variables
that can be used is the available ram on the processor being used.

* Bits - is an optional entry (1 — 32) defining the number of bits that will be written to each variable
in the list. The default is 8 bits. Some devices will send back more than 8 bits or interleave from 8
to 16 bits. The optional bits argument allows the number of bits to be defined that will be stored in
each variable in the list.

Supported
* BA - Supported.
* BAN - Supported.
* BAP - Supported.
* BAP40 - Supported.

Description

The SHIFTIN and SHIFTOUT commands can send or received data from synchronous serial devices
like an SPI device. Synchronous serial differs from asynchronous (SERIN / SEROUT) in that there is
a clock line. This clock line is used to time the data bits sent or received. There are several settings
which make the SHIFTIN / SHIFTOUT commands flexible enough to work with most any synchronous
serial device.

The following tables provides all supported modes and maximum speed in kilo bits per second that
each processor family can handle. There are 8 modes. The first 4 modes (0-3) are standard modes.
The second set of 4 modes (4-7) are basically duplicates of the first 4 modes but for high speed

operation.

Modes
Mode Value Description
MSBPRE 0 Sample bits msb first, before clock pulse.
LSBPRE 1 Sample bits Isb first, before clock pulse.
MSBPOST 2 Sample bits msb first, after clock pulse.
LSBPOST 3 Sample bits Isb first, after a clock pulse.
FASTMSBPRE 4 Faster sampling, msb first, before clock pulse
FASTLSBPRE 5 Faster sampling, Isb first, before clock pulse
FASTMSBPOST 6 Faster sampling, msb first, after clock pulse
FASTLSBPOST 7 Faster sampling, Isb first, after clock pulse

166

Speeds
Processor Mode 0-4 Mode 5-7
BA 50 Kbps 100 Kbps
BAN 20 Kbps 40 Kbps
BAP 100 Kbps 380 Kbps
BAP40 100 Kbps 400 Kbps
ARC32 100 Kbps 400 Kbps

Commands

All SPI devices fall into 4 main transmission modes. They are specific to the timings of the writing and
reading of data. The write and read of data at the first edge of the clock pulse is PRE. The second
edge of the clock pulse is POST. The PRE and POST edge of the clock will change depending on
whether the clock starts high(1) or low(0).

Most SPI device data sheets will indication if they are PRE, POST, MSB or LSB. However in some
case the data sheet might not be clear. So first we must determine if the data is read PRE or POST
clock edge. In almost all cases data can be written and read on the rising and falling edge of the
clock signal. Looking at the timing diagrams below the clock can start from one of two states high(1)
or low(0). The diagrams below illustrate the PRE and POST edge based on a high(1) or low(0) clock
start.

High(1) Clock Start

PRE Edge
[POSTEdge
1{2 3 4 5 6 7 8
cock LU LULTLE
DATA (D7)D6 { D5)D4 D3) D2)(D1 DO

Low(0) Clock Start

PRE Edge
[{POSTEdge
1vV2 3 4 5 6 7 8
cock __ [[JLLU LU UL L
oata__){07)o8)(03)(o4)03)(2 o100

The diagrams for clock start show the data in both cases being written on the POST edge of the
clock. The next thing to determine is the bit order. Which from the diagrams starts with bit 7 (D7) and
ends with bit 0 (D0), this is MSB (Most Significant Bit First). If the byte order were reversed and bit 0
(D0) was first with bit 7 (D7) last that would be LSB (Least Significant Bit First)

187

Commands

Notes
1. SHIFTIN and SHIFTOUT only work as a master device, the clock pin will always be an output for

both SHIFTIN and SHIFTOUT.

Schematics
The wiring diagram below illustrates how to connect a PS2 controller for the given example program.
The connector shown is a standard PS2 cable that can be made or purchased from Lynxmotion. The

DAT pin requires a10K pull-up resistor to work properly.

PS2 Wiring Diagram
P32 adaptor cahle

violet [AcK hic
-—-hnJc Fhwdc Ao W3S

black or white

klue +Eydc TAO Bwdc
vl Cround Iho Ghd
]

red)zhield

I CLE Irc PY
greer ATT I/ PE
orarge MO I/2 PE
Browk DAT o PH
— Eot Board I
Lacking into the cakle end conmnections

Examples

The example program on the following pages can be copied and pasted into Studio. However you
must watch for the header and page number from being copied with it. Copy the first page into a new
bas file then copy and past the second page into the same file.

After the program is loaded connect to it with the terminal window at 38400 baud. The program will
display on the screen what control is being pressed from the PS2 controller and how hard. All buttons
on most PS2 controllers have analog sensors that sense how hard a button is being pressed. These
result will be displayed to the terminal window. Connect the PS2 controller as shown in the above
wiring diagram. Don’t forget the 10K pull-up resistor on the DAT pin.

1868

Commands

;[PS2 Controller Constants]

DAT con PO ;PS2 Controller DAT (Brown)
CMD con P1 ;PS2 controller CMD (Orange)
ATT con P2 ;PS2 Controller SEL (Blue)
CLK con P3 ;PS2 Controller CLK (White)
PadMode con $79

;[Ps2 Controller Variables]

DualShock var Byte(18)

LastButton var Byte(2)

DS2Mode var Byte

PS21ndex var byte

main

gosub Control Input[dualshock(16),dualshock(17)]

serout
serout
serout
serout

serout
serout
serout
serout

serout
serout
serout
serout

serout
serout
serout
serout

serout
serout
serout
serout

pause 1

s out, 38400, [0,”

s _out, 138400, [*“ DPad-Down:
s_out, 138400, [*“ DPad-Right:
s_out, 138400, [*“ DPad-Up:

s_out, 138400, [“Right XAxis:
s_out, 138400, [“Right YAxis:
s _out, 138400, [*“ Left XAxis:
s_out, 138400, [*“ Left YAxis:

s_out, 138400, [
s_out, 138400, [*“
s_out, 138400, [
s_out, 138400, [*“

s_out, 138400, [*“
s_out, 138400, [
s_out, 138400, [
s_out, 138400, [

s_out, 138400, [
s_out, 138400, [
s_out, 138400, [
s_out, 138400, [

00

goto main

ps2_motorww var byte
ps2_motoryy var byte
Control Input [ps2 _motorww,ps2_motoryy]
high CLK
Control Input_Retry

LastButton(0) = DualShock(1)
LastButton(1l) = DualShock(2)

low ATT

DPad-Left: ““,binl dualshock(0).bit7\1,” “,dec dualshock(7),13]

Square:
Cross:
Circle:
Triangle:

Start:
RAXis(R3):
LAXis(L3):

Select:

R1: “,binl dualshock(l).
L1: “,binl dualshock(l)-
R2: “,binl dualshock(l).
L2: “,binl dualshock(l)-

shiftout CMD,CLK,FASTLSBPRE, [$1\8]
shiftin DAT,CLK,FASTLSBPOST, [DS2Mode\8]
high ATT

pause 1

if DS2Mode <> PadMode THEN

low ATT

“,binl dualshock(0).
“,binl dualshock(0) .-
“,binl dualshock(0).
“,binl dualshock(0) .-

“,binl dualshock(l).
“,binl dualshock(l).
“,binl dualshock(l).
“,binl dualshock(l).

“,sdec 128-dualshock(2),13]
“,sdec 128-dualshock(3),13]
“,sdec 128-dualshock(4),13]
“,sdec 128-dualshock(5),13]

bit3\1,13]
bit2\1,13]
biti\1,13]
bitO\1,13]

bit7\1,” *“,dec
bité\1,” “,dec
bit5\1,” “,dec
bit4\1,” “,dec

bit3\1,” ““,dec
bit2\1,” *,dec
biti\1l,” ““,dec
bitO\1,” *,dec

“,binl dualshock(0).bit6\1,” “,dec dualshock(9),13]
“,binl dualshock(0).bit5\1,” “,dec dualshock(6),13]
“,binl dualshock(0).bit4\1,” “,dec dualshock(8),13]

dualshock(13),13]
dualshock(12),13]
dualshock(11),13]
dualshock(10),13]

dualshock(15),13]
dualshock(14),13]
dualshock(17),13]
dualshock(16),13]

shiftout CMD,CLK,FASTLSBPRE, [$1\8,$43\8,$0\8,%$1\8,$0\8] ;enter config mode

high ATT
pause 1

low ATT

shiftout CMD,CLK,FASTLSBPRE, [$01\8,$44\8,$00\8,$01\8,$03\8,$00\8,$00\8,$00\8,$00\8]

169

Commands

;set and lock analog mode
high ATT
pause 1

low ATT

shiftout CMD,CLK,FASTLSBPRE, [$01\8,$4D\8,$00\8,3$00\8,$01\8,$FF\8,$FF\8,$FF\8,$FF\8]
;Enable Vibration motors

high ATT

pause 1

low ATT

shiftout CMD,CLK,FASTLSBPRE, [$01\8,$4F\8,$00\8, $FF\8,$FF\8,$03\8,$00\8,$00\8,$00\8]
;set 18byte reply

high ATT

pause 1

low ATT

shiftout CMD,CLK,FASTLSBPRE, [$01\8,$43\8,$00\8,$00\8,$5A\8, $5A\8, $5A\8, $5A\8, $5A\8]
;exit config mode

high ATT

pause 1

DualShock(1) = 255,255

goto Controllnput Retry
else

low ATT

shiftout CMD,CLK,FASTLSBPRE, [$1\8,$42\8, $00\8]

shiftin DAT,CLK,FASTLSBPOST, [DualShock(0)\8, DualShock(1)\8]

high ATT

low ATT

shiftout CMD,CLK,FASTLSBPRE, [$1\8,$42\8, $00\8,ps2_motormw\8,ps2_motoryy\8]

shiftin DAT,CLK,FASTLSBPOST, [DualShock(2)\8, DualShock(3)\8, DualShock(4)\8,

DualShock(5)\8, |

DualShock(6)\8, DualShock(7)\8, DualShock(8)\8, DualShock(9)\8, |
DualShock(10)\8, DualShock(11)\8, DualShock(12)\8, DualShock(13)\8, |
DualShock(14)\8, DualShock(15)\8, DualShock(16)\8, DualShock(17)\8]

high ATT

endif

return

190

Commands

SHIFTOUT

Syntax
shiftout dpin,cpin,mode,[OutputData1{\bits}, ..., OutputDataN{\bits}]

» Dpin - is a variable, constant or expression that specifies the Data input pin. This pin will switch
to an input pin.

* Cpin - is a variable, constant or expression that specifies the Clock output pin. This pin will switch
to an output.

* Mode - is a value (0 to 7) or a predefined constant that sets the incoming data conditions.

» OutputData - is a variable, constant or expression that specifies the data to be sent. The only
limit to the amount of data is the available ram on the processor being used.

* Bits - is an optional entry (1 — 32) defining the number of bits that will be sent.

Supported
* BA - Supported.
* BAN - Supported.
* BAP - Supported.
* BAP40 - Supported.

Description

The SHIFTIN and SHIFTOUT commands can send or received data from synchronous serial devices
like an SPI device. Synchronous serial differs from asynchronous (SERIN / SEROUT) in that there is
a clock line. This clock line is used to time the data bits sent or received. There are several settings
which make the SHIFTIN / SHIFTOUT commands flexible enough to work with most any synchronous
serial device.

The following tables provides all supported modes and maximum speed in kilo bits per second that
each processor family can handle. There are 8 modes. The first 4 modes (0-3) are standard modes.
The second set of 4 modes (4-7) are basically duplicates of the first 4 modes but for high speed

operation.

Modes
Mode Value Description
MSBPRE 0 Sample bits msb first, before clock pulse.
LSBPRE 1 Sample bits Isb first, before clock pulse.
MSBPOST 2 Sample bits msb first, after clock pulse.
LSBPOST 3 Sample bits Isb first, after a clock pulse.
FASTMSBPRE 4 Faster sampling, msb first, before clock pulse
FASTLSBPRE 5 Faster sampling, Isb first, before clock pulse
FASTMSBPOST 6 Faster sampling, msb first, after clock pulse
FASTLSBPOST 7 Faster sampling, Isb first, after clock pulse

191

Speeds
Processor Mode 0-4 Mode 5-7
BA 50 Kbps 100 Kbps
BAN 20 Kbps 40 Kbps
BAP 100 Kbps 380 Kbps
BAP40 400 Kbps 400 Kbps
ARC32 400 Kbps 400 Kbps

Commands

All SPI devices fall into 4 main transmission modes. They are specific to the timings of the writing and
reading of data. The write and read of data at the first edge of the clock pulse is PRE. The second
edge of the clock pulse is POST. The PRE and POST edge of the clock will change depending on
whether the clock starts high(1) or low(0).

Most SPI device data sheets will indication if they are PRE, POST, MSB or LSB. However in some
case the data sheet might not be clear. So first we must determine if the data is read PRE or POST
clock edge. In almost all cases data can be written and read on the rising and falling edge of the
clock signal. Looking at the timing diagrams below the clock can start from one of two states high(1)
or low(0). The diagrams below illustrate the PRE and POST edge based on a high(1) or low(0) clock
start.

High(1) Clock Start
PRE Edge

POST Edge
Y2 3 4 5 6 7 8

cock LTI LLTLILT
DATA (D7)D6) D5)D4 D3) D2)(D1 DO

Low(0) Clock Start

PRE Edge
/{POST Edge
iv2 3 4 5 6 7 8
CLOCK
oata__)[07)8)(0(o4)03)(2 o100

The diagrams for clock start show the data in both cases being written on the POST edge of the
clock. The next thing to determine is the bit order. Which from the diagrams starts with bit 7 (D7) and
ends with bit 0 (D0), this is MSB (Most Significant Bit First). If the byte order were reversed and bit 0
(D0) was first with bit 7 (D7) last that would be LSB (Least Significant Bit First)

192

Commands

Notes
1. SHIFTIN and SHIFTOUT only work as a master device, the clock pin will always be an output for

both SHIFTIN and SHIFTOUT.

Schematics
The digital potentiometer is controlled by SHIFTOUT command using SPI communications. The 10K

pull-up resistor on CS is require to disable the part when its in an idle state. P1 is connected to the
clock pin and P2 is connected to the serial data input pin.

R1 u1 VCC
10K 1= 5
vCce [PO 5> TS PAO —
= SCK PWO — POT
PBO
3.4 sl
8 VDD VSS ¢ 4

VCC MCP41050-E/P GND

Examples
The following example will cycle the digital potentiometer from OK to 50K. Connect the potentiometer

as shown above and run the example code. Connect a multimeter to ground and the PWO0 / POT pin
on the digital potentiometer. As the code cycles the pot the multimeter reading will corollate.

cs con po
clk con gl
si con p

temp var byte
temp = 0O

high clk
main
temp = temp + 1
low cs }
shiftout si,clk,MSBPRE, [(0x11<<8) | temp\16]
high cs
pause 25
goto main

193

Commands

SLEEP

Syntax
sleep time

e Time - is a variable, constant or expression that specifies the amount of time to sleep.

Supported
» BA - Supported with 1 second timings.
* BAN - Supported with 1 second timings.
* BAP - Supported with 1ms timings.
» BAP40 - Supported with 1ms timings.

Description

The SLEEP command is similar to the NAP command. It use the same behind the scene method

to put the processor in a lower power state. SLEEP however supports timings in increments of 1.
The BasicATOM and Nano supports 1 second timings. The BasicATOM Pro and BasicATOM Pro 40
support 1 millisecond timing increments.

Notes
1. BasicATOM and Nano support 1 second timing increments.
2. BasicATOM Pro and BasicATOM Pro 40 support 1 millisecond timings.

Example
The example program shown will sleep for 1 minute on a BasicATOM and Nano. Increase 60 to
60000 to sleep for the same time on the BasicATOM Pro and BasicATOM Pro 40 .

main _ _
serout s out, 19600, [“Going to Sleep’]

sleep 60 ;change to 6000 for ATOM Pro
serout s out, 19600, [“1°m awake!’]

goto main

194

Commands

SOUND

Syntax
sound pin, [duration\note, ...]

* Pin - is a variable or constant that specifies the pin used to generate the sounds on.

» Duration - is a variable, constant or expression that specifies how long to play the note following
the backslash (\). Duration is in milliseconds.

* Note - is a variable constant or expression that specifies the frequency to generate in Hz. Notes
and their durations can be a list separated by commas and only limited to the amount of user ram
available.

Supported
* BA - Supported.
* BAN - Supported.
* BAP - Supported.
* BAP40 - Supported.

Description
The SOUND command generates a square wave output. It can drive a small piezo speaker without
amplification. To increase the volume output add a low pass filter such as a 10uf capacitor in-line.

Schematic
The schematic outlines a simple method of connecting a piezo speaker. The 10uf capacitor is typically

an electrolytic but can be a tantalum. You can experiment by omitting the capacitor when a song is
being played to see the difference it makes.

C1 SPK1

10uF
Speaker

195

Commands

Example

Connect a piezo speaker to PO. The speakers GND should be connected to GND and the positive
side connected through a 10uf capacitor to PO (See schematic). The following program will play “Mary
Had a Little Lamb” looping forever. The constant table in the program is setup to correctly create a
given note. This makes writing the song easier since its now human readable. See what songs you
can make.

;ALL - all_sound.bas

;The below table defines all the notes needed.
; 1t asigns the numeric value to an easily readable
;constant to make the song easier to create.

AH con 440*2 ;assigns a_value for the note and octave
AS con 466*2 ;the note is 466*2 = A sharp second octave
BH con 494*2

CH con 523*2

CS con 554*2

DH con 587*2

DS con 622*2

EH con 659*2

FH con 698*2

FS con 740*2

GH con 784*2

GS con 831*2

;A_IookuE table is used to load the notes into the sound command.
;With _a FOR/NEXT loop to increment through the note table in lookup.
;A slight pause is added to prevent the notes from overlapping. The
;loop will repeat forever.

Position var byte
Note var long

playsong o
for Position = O0_to 33
lookup Position,[CS,BH,AH,BH,CS,0,CS,0,CS,BH,0,BH,0,BH,0,CS, |
EH, 0, EH,CS,BH,AH,BH,CS,0,CS,0,CS,BH,0,BH,CS,BH,AH],Note
iT Note then
sound pO, [300\Note]

else
pause 10
endif
next
pause 5000

goto playsong

196

Commands

SOUND2

Syntax
sound?2 pin1\pin2,[duration\note1\note2, ...]

* Pin - is a variable, constant or expression that specifies the first pin used for generating note1 on.
* Pin - is a variable, constant or expression that specifies the first pin used for generating note2 on.

» Duration - is a variable, constant or expression that specifies how long to play the note (following
the \). Duration is in milliseconds.

* Notel - is a variable constant or expression that specifies the first frequency to generate in Hz.
Notes and their durations can be a list separated by commas and only limited to the amount of
user ram available.

* Note2 - is a variable constant or expression that specifies the second frequency to generate in
Hz. Notes and their durations can be a list separated by commas and only limited to the amount
of user ram available.

Supported
* BA - Supported.
* BAN - Supported.
* BAP - Supported.
* BAP40 - Supported.

Description

The SOUND2 command generates two square waves. Each wave is output on a unique pin. It can
drive a small piezo speaker without amplification. To increase the volume output add a low pass filter
such as a 10uf capacitor in-line.

Schematic

The schematic outlines a simple method of connecting a piezo speaker. The 10uf capacitor is typically
an electrolytic but can be a tantalum. You can experiment by omitting the capacitor when a song is
being played to see the difference it makes.

C1 SPK1
10uF
}f +
+ -
Cc2

10uF
Speaker
Examples

The following example will generate a two tone sound from PO and P1. To connect a speaker see the
circuits shown for SOUND.

main
sound2 p0,pl, [500\500\1000,500\600\900]
goto main

197

Commands

STOP
Syntax
stop

Supported

* BA - supported

* BAN - supported

* BAP - supported

* BAP40 - supported

Description

Stops program execution until a reset occurs. All I/O pins will remain in their last known state.
Typically STOP is used at the very end of a program to halt all processes and cleanly shut down
operation. STOP works almost the same as END. Unlike END, STOP does not put the processor in a
low power mode.

Example
The following example will only run once. The program will only restart if reset is pressed of the power
is cycled.

value var long

serout s_out, 19600, [“This program just stops.”!131
serout s out, 19600, [“Press reset to see 1t again.
stop

.13]

198

Commands

SWAP

Syntax
swap variable1, variable2

» Variable - is any variable defined in the program.

Supported
* BA - Supported.
* BAN - Supported.
* BAP - Supported.
* BAP40 - Supported.

Description
The SWAP command is a coinvent way to switch the value of one variable with another.

Notes
1. SWAP will truncate a value if it is larger than the destination variable is setup for. If a WORD value
is loaded into a BYTE variable it will truncate and load the low byte of the WORD.

Examples
Connect to the following program with the terminal window set to 9600 baud. Variable1 and variable2

values will be printed to the screen. The variables are then printed again, after the SWAP command is
issued. You can see values of the variables have been swapped.

;ALL - all_swap.bas

Variablel var word
Variable2 var word

Variablel = 256
Variable2 = 512

Main
Pause 500 } } }
Serout s_out, 19600, [0, “Variablel = *, dec variablel, 13]
Serout s out, 19600, [“Variable2 = “, dec variable2,13]

Pause 1000 } } }

Serout s out, 19600, [13, “Swapping Variables”, 13]

Pause 1000

swap variablel, variable2 ;lets swap varl with var2

;Lets see what_happened } }

Serout s_out, 19600, [13, “Variablel = *, dec variablel, 13]
Serout s out, 19600, [“Variable2 = “, dec variable2?]

End

199

Commands

TOGGLE

Syntax
toggle pin

* Pin - is any expression, constant or variable that specifies an I/O pin to use.

Supported
* BA - Supported.
* BAN - Supported.
* BAP - Supported.
* BAP40 - Supported.

Description

TOGGLE configures a pin as an output and toggles it's state from low (0) to high (1) or high (1) to low
(0). The TOGGLE command is not like the REVERSE command since TOGGLE only deals with the
output state of the pin low or high.

Notes
1. All pins on power up are inputs by default with a default output state of low if made outputs.

Schematic
Connect a LED as shown below. You can substitute the resistor for anything from 330 ohms to 470

ohms.
D1
V!
R1 #
_—AM—N—{ GND
390
LED
Example

The following program demonstrates another way to blink an LED attached to pin 0. The TOGGLE
command changes the state of the pin from low as defined by LOW PO to a high since it “toggles” the
pin state.

;Wire an LED to PO

Toggle pO
Pagge 580

Goto mailn

200

Commands

WHILE - WEND

Syntax
while condition

program statements
wend

e Condition - can be a variable or expression
» Statements - any group of commands to be run inside the loop.

Supported
* BA - Supported.
* BAN - Supported.
* BAP - Supported.
* BAP40 - Supported.

Description

The WHILE - WEND loop executes commands nested inside of it will some condition is true. The
condition is tested before the WHILE - WEND loop is ran. This is opposite of DO - WHILE which will
test the condition for true after running once. The condition can be any variable or expression and is
tested every loop until false. A simple example would be using the WHILE - WEND loop to test the
state of an input pin. If the pin is low go do something until pin is high.

Notes

1. In the programming world 0 is consider false. By default WHILE - WEND will test this condition. If a
stand alone variable is used for the test the loop will continue until its value equals 0.

2. WHILE - WEND checks the condition first. If the condition is false the WHILE - WEND statements
and all program code nested within them will not run.

3. You can nest multiple WHILE - WEND commands within each other. However you can not nest
DO - WHILE with a WHILE - WEND together or the compiler will get the WHILE statements con
fused.

201

Commands

Example
Connect to the following program with the terminal window set to 9600 baud. The program will

start counting up from 0 to 100. Once index reaches a value of 100 the condition is no longer true.
The less than symbol < was used for the condition and 100 is no longer less than 100 making the
condition false. Since WHILE - WEND loops if a statement is true the program exits.

;ALL - all_while_wend2.bas
Index var word

Main
Index = O

While Index < 100 ;run until no longer less than 100
index = index + 1

;print the value of index _)
serout s out, 19600,[0, “Couting: “, dec index]

pause 75

wend

serout s_out, 19600, [13,13, “Index = *, dec index]
serout s_out, 19600, [13, “My condition is no longer true.”]
serout s out, 19600, [13, “Index is no longer less than 100™]

End

202

Commands

WRITE

Syntax
write address,data

e Address - address of eeprom to store data

» Data - is a byte value that will be written to the address specified. It can be an expression,
constant or variable.

Supported
* BA - Supported.
* BAN - Supported.
* BAP - Supported.
* BAP40 - Supported.

Description

All modules except the BasicATOM Pro 24 come with built in eeprom. The READ / WRITE commands
were created to access the built in memory. WRITE will write a signal byte to the built in eeprom at
the address specified in the command.

Notes

1. The AtomPro24 does not have built in eeprom. An external 32kbit or larger eeprom can be added.
Connect the eeprom SCL pin to P10 and the eeprom SDA pin to P11. A 10k ohm pull up resistor is
required on P11. Ground the eeproms A0,A1 and A2 address pins.

Example
The example program will write the string “Hello” starting at the first location to the built in memory.
Next, it will read built in memory locations 0 through 10 and print the contents to the terminal window.

index var byte
char var byte

write 0,”H”
write 1,7e”
write 2,71~
write 3,71
write 4,”0”

for index = 0 to 10

read index,char

serout s out, 19600, [char]
next
end

203

Commands

WRITEDM

Syntax
write address,[{modifiers}data1, ..., {modifiers}dataN]

* Address - memory location to start the write at. Can be an expression, constant or variable.

» Data - a list of values and optional modifiers that will be stored in the built in eeprom. Values
larger than a byte will be truncated to a byte.

» Modifiers - are used in the command syntax to format data. Refer to the modifier section of this
manual. All output modifiers are supported

Supported
* BA - Supported.
* BAN - Supported.
* BAP - Supported.
* BAP40 - Supported.

Description

The READDM differs from the READ command in that its auto incrementing. It can be ran once and
read multiple bytes from the onboard eeprom using only a starting address. READDM will continue
to read based on how many variables are specified. Modifiers can be used to format the data or add
functionality to the command. See table above.

Notes

1. The AtomPro24 does not have built in eeprom. An external 32kbit or larger eeprom can be added.
Connect the eeprom SCL pin to P10 and the eeprom SDA pin to P11. A 10k ohm pull up resistor is
required on P11. Ground the eeproms A0,A1 and A2 address pins.

2. The WriteDM command differs from the Write command in that auto increments the address. It
can write multiple bytes each time it is executed. The Write command can only write one byte
each time it is executed.

Example:

The program will write “Hello World” to the on board eeprom starting at location 0. Then using the
ReadDM command will read the on board eeprom starting at location 0 then print the results to the
terminal window using 9600 baud.

writedm O, [“Hello world’’]

index var byte
string var byte(11)

readdm index, [str string\11]
. serout s out, 19600, [str string\11]
en

204

Interrupts

Interrupts

205

Interru pts

Interrupts

While the program is executing it is possible to interrupt this execution to handle another event. The
events can be things like a pin changing from high to low or low to high. Other events can be received
data or timers counting down or counting up. There are several types of interrupts. The interrupt
system is an advance feature of MBasic and should only be explored by an advance users. A basic
understanding of interrupts and there limitations is required to utilize them properly. MBasic interrupts
are only available on BasicATOMPro processors(ProONE,Pro24,Pro28,Pro40 and ARC32)

ONINTERRUPT
oninterrupt interrupt, handler

 Interrupt - one of the listed interrupt types. See Interrupt Types table.
* Handler - the interrupt handler label to jump to when the interrupt triggers.

This is a directive to the compiler to specify the label to jump to when a specific interrupt triggers. The
interrupt handler label must use RESUME to exit the interrupt handler.

ONASMINTERRUPT
onasminterrupt interrupt, handler

 Interrupt - one of the listed interrupt types. See Interrupt Types table.

* Handler - the assembly interrupt handler label to jump to when the interrupt triggers.
This is a directive to the compiler to specify the label to jump to when a specific interrupt triggers. The
assembly interrupt handler must use the RTE assembly command to exit the interrupt handler.
ENABLE
enable {interrupt}

 Interrupt - an optional argument of one of the listed interrupt types. See Interrupt Types table.
Enables one or all interrupts. When used with no arguments the global interrupt enable flag is set.

When used with an interrupt argument, that interrupt’s enable flag is set. Only when both the global
interrupt flag and specific interrupt flags are set will those interrupts be allowed to trigger.

DISABLE
disable {interrupt}

 Interrupt - an optional argument of one of the listed interrupt types. See Interrupt Types table.
Disables one or all interrupts. When used with no arguments the global interrupt enable flag is

cleared.When used with an interrupt argument, that interrupt’'s enable flag is cleared. If either the
global interrupt flag or the specific interrupt flag is cleared that interrupt will not trigger.

206

lnterrupts

RESUME
resume

This command is used to exit the Basic interrupt handler and return to the point in your program
where execution was interrupted due to an interrupt trigger.

Interrupt Example

The following example uses Time V and creates a counter that will blink an LED every second
regardless of what the program is doing. This is a very simple way to create a back ground task that
can easily indicate the device is still running.

;calculates the number of interrupts per 1/100th of a second
;as a floating point constant.

interval fcon MHZ/100/256/128

counter var float
counter = 0.0

milliseconds var long

milliseconds = O

TCRVO = 0Ox03 ;Sets Timer V to count once every 128 0SC clocks
TCRV1 = 0x01

;Tells the processor where to jump to when the timer V
;overflow interrupt triggers.

ONINTERRUPT TIMERVINT_OVF,handler

ENABLE TIMERVINT_OVF ;enables the timer V_overflow interrupt
ENABLE ;enables interrupts in general
main _ o

if(milliseconds >= 500)then

tQ??!e p S
__milliseconds = milliseconds - 500
endif _

goto main

handler =)
;this interrupt is executed once per 256*128 clock cycles

counter = counter + 1.0
if(counter>interval)then
counter=counter-interval
__milliseconds = milliseconds + 10
endif
resume

207

Interru pts

Interrupt Types

There are several types of interrupts available on the BasicATOM Pro processors. The following
tables list all the types available in MBasic. The types of interrupts will trigger based on different
events. The processor at the heart of the BasicATOM Pro is an H8Tiny. The following chart details
what is available. Information on how to utilize the interrupt can be found in the H8Tiny hardware
manuals.

Interrupt Table

Interrupt Description Renesas Hardware Manual Pages
IRQOINT Irg0 pin interrupt

IRQ1TINT Irq1 pin interrupt

IRQ2INT Irq2 pin interrupt

IRQ3INT Irg3 pin interrupt

WKPINT_O WKPO pin onchange interrupt
WKPINT_1 WKP1 pin onchange interrupt
WKPINT_2 WKP2 pin onchange interrupt
WKPINT_3 WKP3 pin onchange interrupt
WKPINT_4 WKP4 pin onchange interrupt
WKPINT_5 WKP5 pin onchange interrupt
TIMERVINT_OVF TimerV overflow interrupt
TIMERVINT_CMEB TimerV compare match A int
TIMERVINT_CMEA TimerV compare match B int
SCI3INT_TDRE Transmit Data Register Empty interrupt
SCI3INT_RDRF Read Data Register Full interrupt
SCI3INT_TEND Transmit End interrupt

SCI3INT_OER Overflow Error interrupt

SCI3INT_FER Frame Error interrupt

SCI3INT_PER Parity Error interrupt

IICINT 12C interrupt

ADINT Analog conversion complete int
HSERIALINT_TDRE Transmit Data Register Empty interrupt
HSERIALINT_RDRF Read Data Register Full interrupt
HSERIALINT_TEND Transmit End interrupt
HSERIALINT_OER Overflow Error interrupt
HSERIALINT_FER Frame Error interrupt
HSERIALINT_PER Parity Error interrupt.98

HSERVOINT Servo Handler interrupt.
HSERVOINT_IDLE# Servo Idle interrupt. Replace # with servo number.

208

Interru pts

BAP ONE/24/28 Only Interrupt Types

Interrupt

TIMERAINT

Description

Overflow interrupt

Renesas Hardware Manual Pages

TIMERWINT_OVF

Overflow interrupt

TIMERWINT_IMIEA

Capture/Compare Match A int

TIMERWINT_IMIEB

Capture/Compare Match B int

TIMERWINT_IMIEC

Capture/Compare Match C int

TIMERWINT_IMIED

Capture/Compare Match D int

BAP40/ARC32 Only Interrupt Types

Interrupts

RTCINT

Description

Real time clock interrupt

Renesas Hardware Manual Pages

TIMERZOINT_OVF

Overflow interrupt

TIMERZOINT_IMIEA

Capture/Compare Match A int

TIMERZOINT_IMIEB

Capture/Compare Match B int

TIMERZOINT_IMIEC

Capture/Compare Match C int

TIMERZOINT_IMIED

Capture/Compare Match D int

TIMERZ1INT_UDF

Underflow interrupt

TIMERZ1INT_OVF

Overflow interrupt

TIMERZ1INT_IMIEA

Capture/Compare Match A int

TIMERZ1INT_IMIEB

Capture/Compare Match B int

TIMERZ1INT_IMIEC

Capture/Compare Match C int

TIMERZ1INT_IMIED

Capture/Compare Match D int

TIMERB1INT

Overflow interrupt

SCI3_2INT_TDRE

Transmit Data Register Empty interrupt

SCI3_2INT_RDRF

Read Data Register Full interrupt

SCI3_2INT_TEND

Transmit End interrupt

SCI3_2INT_OER

Overflow Error interrupt

SCI3_2INT_FER

Frame Error interrupt

SCI3_2INT_PER

Parity Error interrupt

HSERIAL2INT_TDRE

Transmit Data Register Empty interrupt

HSERIAL2INT_RDRF

Read Data Register Full interrupt

HSERIAL2INT_TEND

Transmit End interrupt

HSERIAL2INT_OER

Overflow Error interrupt

HSERIAL2INT_FER

Frame Error interrupt

HSERIAL2INT_PER

Parity Error interrupt.

209

Basic Stamp Conversion

210

UOISJ2AU0-) dWDLS 21SDY

Basic Stamp Conversion

Basic Stamp Conversion

The following section covers some of the differences you need to be aware of when porting over from
a Basic Stamp. Several commands will have speed differences. The speed difference can cause
timing issues with your program. Simply making changes to the arguments for those commands will
solve most porting issues. The following is a list of compiled notes we have collect from customers
and our own experiences when porting programs from the Basic Stamp.

Timings
On average most commands will execute considerably faster. In some cases you may need to add
pauses in between commands if you have timing critical functions.

Math
MBasic treats math correctly signed or unsigned. So normal math rules apply.

AUXIO
The AUXIO command has no MBasic equivalent since all I/O are available at all times. No banking of
pins is required.

IN/OUT /DIR
On the Basic Stamp IN / OUT / DIR variables only support up to 16 1/0Os. MBasic has pin variables for
all pins including the AtomPro 40 pin module.

BRANCH
The BRANCH command in Mbasic has no label limits. In PBasic its 255 max.

BUTTON
The BUTTON command is functionally the same.

COMPARE
The COMPARE command has no MBsic equivalent. RCTIME and or hardware analog functions can
be used as a possible alternate.

CONFIGPIN
The CONFIGPIN command has no MBasic equivalent. Pull-ups can be added to an existing circuit.

COUNT
The COUNT command is the same but can be 32bits on the AtomPro. Duration is in clock cycles.

DATA
The DATA command has no equivalent on the BasicATOM Pro processors. Data can be loaded to the
on board eeprom using a Write command.

DEBUG / DEBUGIN
The debug commands are very different. They uses the same syntax as SEROUT / SERIN inside the
brackets.

DO
The DO loop command is similar to MBasic DO..WHILE, WHILE..WEND or REPEAT..UNTIL.

DTMFOUT
The DTMFOUT command on time and off time use 1ms increments on all modules/processors.

211

Basic Stamp Conversion

EEPROM
The EEPROM command has no MBasic equivalent.

EXIT
The EXIT command has no MBasic equivalent. To exit form a loop add an exit label to the loop.

do
...doing stuff...)
_iT wanttoexit then goto loopexit
while 1
loopexit:

FOR...NEXT
The FOR..NEXT loop functions the same.

FREQOUT
The FREQOUT command is similar but the duration is in milliseconds in MBasic. Freq1 and Freq2
are in Hz.

GET
The GET command has no MBasic equivalent. An alternate method would be to define a variable and
access directly instead of using PBasic scratch pad memory.

GOSUB

The GOSUB command is functionally the same except MBasic supports calling subroutines with
arguments. There is no limit on the number of total GOSUBS. Nested GOSUBS are only limited by
the total stack memory available.

GOTO
The GOTO command functions the same.

HIGH
The HIGH command functions the same.

12CIN - 12COUT

The 12C commands in MBasic are generic and will work with any 12C device. We've removed the
eeprom address argument and a I2COUT command is used to send the address when talking to an
eeprom. I2CIN data rates are 70kbps on the AtomPro 24, 28 and ONE. 87kbps on the BasicAtom Pro
40 and ARC32.

IF.. THEN

The IF. THEN commands are mostly the same except MBasic doesn’t support IF Condition(s) THEN
Statement(s) { ELSE Statement(s) } directly. To do this you have to do this:

IF Condition(s) THEN : Statement(s) { : ELSE Statement(s) } : ENDIF

You have to add the “:” because that makes the compiler see a new line. There is no max nested limit
There is no max ELSEIF limit.

212

Basic Stamp Conversion

INPUT
The INPUT command functions the same.

IOTERM
The IOTERM command has no MBasic equivalent. There is no need to switch between pin banks on
the Atom.

LCDCMD

The LCD commands function differently. LCDCMD is replaced with LCDWRITE to send LCD
commands. To send a command with LCDWrite send 0x100 + commmand number. See LCDWRITE
and LCDREAD command section of this manual.

LCDIN
The BS2 LCDIN command is replaced with the MBasic LCDREAD command.

LCDOUT
The BS2 LCDOUT command is replaced with the MBasic LCDWRITE command.

LET
The LET command is supported with the use of modifiers or loading array variables with a single
command.

let myarray = 1,2,3,4,5,6.

LOOKDOWN
The LOOKDOWN command syntax is similar to the BS2. No entry limit. MBasic LOOKDOWN
supports 32bit expressions and values .

LOOKUP
The LOOKUP command syntax is similar to the BS2. No entry limit. MBasic LOOKDOWN supports
32bit expressions and values .

LOW
The LOW command functions the same.

MAINIO
The MAINIO command has no MBasic equivalent and is not required because all pins are directly
accessible.

NAP
The NAP command is the same on all processors.

213

Basic Stamp Conversion

ON
The ON command has no MBasic equivalent. Here is the way to get the same functionality.

main
gosub branchsub

goto main

branchsub
branch index, [labell, label2, label3, label4]
..do default stuff..
return

labell
..do stuff..
return

label?2
..do stuff..
return

label3
..do stuff..
return

label4
..do stuff..
return

OUTPUT
The OUTPUT command functions the same.

OWIN - OWOUT
The One Wire commands functions the same except Mbasic supports a no connection label. Used to
jump to if 1-wire device is not connected. Mbasic only supports normal speed.

PAUSE

The PAUSE command will run at the same speed since its arguments are based on time. If you
are using PAUSE in a loop you may need to increase the value used for PAUSE since the loop will
execute faster because other commands execute faster.

POLLIN
The POLLIN command has no MBasic equivalent. However the functionality can be replicated in code
due to the speed on the Atom processors. Optionally Interrupts can be used.

POLLMODE
The POLLMODE command has no MBasic equivalent. However the functionality can be replicated in
code due to the speed on the Atom processors. Optionally Interrupts can be used.

POLLOUT
The POLLOUT command has no MBasic equivalent. However the functionality can be replicated in
code due to the speed on the Atom processors. Optionally Interrupts can be used.

POLLRUN
The POLLRUN command has no MBasic equivalent. However the functionality can be replicated in
code due to the speed on the Atom processors. Optionally Interrupts can be used.

214

Basic Stamp Conversion

POLLWAIT
The POLLWAIT command has no MBasic equivalent. However the functionality can be replicated in
code due to the speed on the Atom processors. Optionally Interrupts can be used.

POT
The POT command is replaced by RCTIME. Which provides the same functionality. ADIN would be a
better choice in most cases though.

PULSIN..PULSOUT
The pulse commands functions the same. Units are in .5us with 32bit range or about 35 minutes max
pulse width(when setting the time out to the maximum). Default time out is 65536 units or ~32ms.

PUT
The PUT command has no MBasic equivalent. The same functionality is available by using standard
user defined variables instead.

PWM

The PWM command for MBasic has an additional argument for the period. Use a period of 256
in Mbasic to duplicate the BS2 PWM command. Units are .5us. With a period of 256 cycles are
.1285ms

RANDOM
The RANDOM command in MBasic is a function. eg temp = random seed. MBasic will produce a
32bit random number.

RCTIME
The RCTIME command is functionally the same. Units are .5us. The maximum range is 32bits.
Default time out is 65536 or approximately 32ms.

READ
The READ command is functionally the same. Read address 0 to 4095 on the AtomPro 28/40. Read
addresses 0 to 32,767 on ARC32

RETURN
The RETURN command is functionally the same. We support returning a value.

REVERSE
The REVERSE command is functionally the same.

RUN
The RUN command has no MBasic equivalent. Can replace with a GOTO command in order to jump
to another section of code. There is no 2K program limits in MBasic.

SELECT..CASE
The SELECT..CASE commands can be replaced with MBasic IF.. THEN..ELSEIF..ELSE..ENDIF.

SERIN..SEROUT
The serial commands are functionally the same. The maximum standard baudrate is over 115200bps
on all AtomPro modules. no limit to qualifiers. Time out is in .5us units

SHIFTIN..SHIFTOUT
The shift commands are functionally the same except for speed and extended modes

215

Basic Stamp Conversion

SLEEP
The SLEEP command is functionally the same but it is in ~1ms units on BasicATOMPro.

SOUND
The SOUND command is functionally the same but Mbasic allows multiple sounds in a sequence.
Units are in ms and Hz.

STOP
The STOP command is functionally the same.

STORE
The STORE command has no MBasic equivalent. This command is not necessary with MBasic.
Since all memory is accessible at all times.

TOGGLE
The TOGGLE command is functionally the same.

WRITE
The WRITE command is functionally the same. Same memory size as listed for READ

XOuT
The X10 commands have no MBasic equivalent. Most X10 units now use a serial protocol making the
XOUT / XIN commands obsolete.

216

Compiler Directives

Compiler Directives

217

Compiler Directives

Compiler Directives

MBasic supports compile time directives. Compile time directives can be used to selectively include or
exclude parts of a program which can be very useful. An example would be a product that has several
configurations but only requires one program with some minor changes. During compile time you can

define what the master program is compiled for allowing MBasic to conditionally compile certain parts

of the program.

This lets you keep a collection of frequently used program modules (“snippets” of code) and include
them whenever you need them. It also provides conditional tests (IF ... THEN) to modify the code to
compile different versions of a program.

Including Files

Perhaps you've written a subroutine to control an LCD display, and you’d like to use this subroutine in
various different programs. You can save the subroutine on disk, and “include” it whenever you need
it. The #include directive is used to “paste” program modules at compile time. Modules are pasted at
the location of the #include directive.

#Include
#include “filename”
#include “partial or complete path to file”

Example

Assume that your LCD subroutine is called “Icd.bas” and is in the same directory as your main
program. The subroutine contains the label “displaywrite”. You can include this in your program as
shown:

main
(some code) _)
gosub displaywrite
some more code)
include “lcd.bas”
end

The #include directive simply pastes in the code from Icd.bas as if it was part of your program.
If Icd.bas is in a subdirectory of your program directory, just put the partial path, for example:

#include “modules\icd.bas”

If it's in another directory, you can include the relative or absolute path, using normal Windows
notation.

Conditional Compiling

Sometimes the same program may be used for slightly different applications. For example, if you've
written a program to display temperature from a sensor, you may want versions for Celsius and
Fahrenheit degrees, or perhaps you want one version to use an LCD display and a different one to
output serial data to your computer. Most of the code is identical, but some constants, variables and
subroutines may differ.

Conditional compiling lets you set a “switch” in your program (usually a constant, but not necessarily)
that controls compiling. You can have different constants, variables, or even different sections of code
compiled depending on the switch or switches that you set.

218

Compiler Directives

#IF .. #ENDIF

#IF expression
optional code

#ENDIF

Example

Similar to Mbasic IF..THEN conditional branch but specifies code to be compiled if the expression is
true. In the example below the constant temp is set to 1. During compile time the #IF will test temp to
see if it is true. Which in the example below will return true so the following block of code is included
during compile time.

temp con 1
#1F temp=1_
. .optional code..
#ENDIF
..rest of program..

#IFDEF .. #ENDIF
#IFDEF name
..optional code..
#ENDIF
..rest of program..

Example
Compiles the code (up to #ENDIF) if the constant or variable (name) is defined, or if the label appears
previously in the code.

temperature var byte

#1FDEF temperature
..optional code..

#ENDIF

..rest of program..

This will compile “optional code” because “temperature” has been defined.

#IFNDEF .. #ENDIF
#IFNDEF name
..optional code..
#ENDIF
..rest of program..

Example

Compiles the code between #IFNDEF and #ENDIF only if the constant or variable has not been
defined, or the label has not been previously used in the program. In effect, it's the opposite of
#IFDEF.

temBerature var byte
#1FDEF temperature

. .optional code..
#ENDIF
..rest of program..

This will NOT compile “optional code” because “temperature” has been defined.

219

Compiler Directives

#ELSE
#IF expression
..optional code..
#ELSE
..use this code if the other code wasnt used..
#ENDIF
..rest of program..

Example
Allows you to have two code snippets, and compile one or the other depending on the result of the
#IF, #IFDEF or #IFNDEF directive.

temp con 1
#1F temp=1_

..optional code..
#ELSE)

. .more optional code..
#ENDIF

..rest of program..

Compiles “optional code” if “temp = 1" and “more optional code” if “temp” is equal to any other value.

#ELSIF
#IF expression

..optional code..
#ELSEIF

..more optional code..
#ELSEIF

..even more optional code..
#ELSE

..if nothing else was used, then use this code..
#ENDIF
..rest of program..

Example
Allows multiple snippets of code to be compiled based on multiple tests. ELSEIF is an extension of
#ELSE and allows multiple test to be ran during compile time.

screentype con 1

#1F screentype=1

..optional code..
#ELSEIF screentype=2

.. more optional code..
#ELSEIF screentype=3_

..even more optional code..
#ENDIF
... rest of program ...

Compiles “optional code”, “more other code”, or “even more optional code” depending on what
the constant “screentype” is set to (1, 2 or 3). If “screentype” has some other value than 1,2 or 3
compilation simply continues with “rest of program” and none of the optional code is compiled.

220

Compiler Directives

#ELSEIFDEF, #ELSEIFNDEF

Equivalents of #ELSEIF for the #IFDEF and #IFNDEF directives.
Syntax

#ELSEIFDEF name

#ELSEIFNDEF name

Example

Similar to the example given for #ELSEIF.

BEGINASMSUB, ENDASMSUB
This is a special directive that tells the compiler not to add special entry code to inline assembly

code. This is necessary when writing ASM subroutines which are called by other ASM code and ASM
interrupt handlers.

221

Reserved Words

Reserved Words

222

Reserved Words

Reserved Words

The following section list all the names and words used internally by MBasic. These words can not
be used in your program for constants and variable names. Otherwise MBasic will mistake them for

commands or other internal names.

Reserved Words

Name Name Name Name
DIRS DIR24 IN14 OouT4
DIRL DIR25 IN15 OouT5
DIRH DIR26 IN16 OouT6
DIRA DIR27 IN17 ouT7
DIRB DIR28 IN18 OouT8
DIRC DIR29 IN19 OouT9
DIRD DIR30 IN20 OouT10
DIREA DIR31 IN21 ouT!
DIREB DIR32 IN22 OouT12
DIREC DIR33 IN23 OuUT13
DIRED INS IN24 OouT14
DIRO INL IN25 OuUT15
DIR1 INH IN26 OouUT16
DIR2 INA IN27 ouT17
DIR3 INB IN28 OouT18
DIR4 INC IN29 OuUT19
DIR5 IND IN30 OuUT20
DIR6 INEA IN31 ouT21
DIR7 INEB IN32 ouT22
DIR8 INEC IN33 ouT23
DIR9 INED OUTS ouT24
DIR10 INO OUTL OouT25
DIR11 IN1 OUTH OouUT26
DIR12 IN2 OUTA ouT27
DIR13 IN3 ouTB ouT28
DIR14 IN4 OouTC 0ouT29
DIR15 IN5 OuUTD OUT30
DIR16 IN6 OUTEA OUT31
DIR17 IN7 OUTEB OouUT32
DIR18 IN8 OUTEC OuUT33
DIR19 IN9 OUTED INDF
DIR20 IN10 ouTo TMRO
DIR21 IN11 ouT1 PCL
DIR22 IN12 ouT2 STATUS
DIR23 IN13 OuT3 FSR

223

Reserved Words

Reserved Words

Name Name Name Name
PORTA SSPADD RBIE SSPM1
PORTB SSPSTAT TOIF SSPMO
PORTC WPUB TMROIF P1M1
PORTD I0CB INTF P1MO
PORTE VRCON RBIF DC1B1
PCLATH TXSTA ADIF CCP1X
INTCON SPBRG RCIF DC1B0
PIR1 SPBRGH TXIF CCP1Y
PIR2 PWM1CON SSPIF CCP1M3
TMR1L ECCPAS CCP1IF CCP1M2
TMR1H PSTRCON TMR2IF CCP1M1
T1CON ADRESL TMR1IF CCP1MO
TMR2 ADCON1 OSPIF SPEN
T2CON WDTCON C2IF RX9
SSPBUF CM1CONO C1IF RC9
SSPCON CM2CONO EEIF NOT_RCS8
CCPR1L CM2CON1 BCLIF RC8_9
CCPR1H EEDATA ULPWUIF SREN
CCP1CON EEADR CCP2IF CREN
RCSTA EEDATH T1CKPS1 ADDEN
TXREG EEADRH T1CKPSO0 FERR
RCREG SRCON T10SCEN OERR
CCPR2L BAUDCTL NOT_T1SYNC RX9D
CCPR2H ANSEL T1INSYNC RCD8
CCP2CON ANSELH T1SYNC CCP2X
ADRESH EECON1 TMR1CS DC2B1
ADCONO EECON2 TMR10ON CCP2Y
OPTION_REG IRP TOUTPS3 DC2B0
TRISA RP1 TOUTPS2 CCP2M3
TRISB RPO TOUTPS1 CCP2M2
TRISC NOT_TO TOUTPSO CCP2M1
TRISD NOT_PD TMR20ON CCP2MO
TRISE z T2CKPS1 ADCS1
PIE1 DC T2CKPS0 ADCS0
PIE2 C WCOL CHS3
PCON GIE SSPOV CHS2
OSCCON PEIE SSPEN CHS1
OSCTUNE TOIE CKP CHSO0
SSPCON2 TMROIE SSPM3 GO

PR2 INTE SSPM2 NOT_DONE

224

Reserved Words

Reserved Words

Name Name Name Name
GO_DONE TUNO I0CB4 PDC6
ADON GCEN 10CB3 PDC5
NOT_RBPU ACKSTAT 10CB2 PDC4
INTEDG ACKDT 10CB1 PDC3
TOCS ACKEN 10CBO PDC2
TOSE RCEN VREN PDC1
PSA PEN VROE PDCO
PS2 RSEN VRR ECCPASE
PS1 SEN VRSS ECCPAS2
PSO SMP VR3 ECCPAS1
ADIE CKE VR2 ECCPASO
RCIE D VR1 PSSAC1
TXIE I12C_DATA VRO PSSACO
SSPIE NOT_A CSRC PSSBD1
CCP1IE NOT_ADDRESS TX9 PSSBDO
TMR2IE D_A NOT_TX8 STRSYNC
TMR1IE DATA_ADDRESS TX8_9 STRD
OSFIE P TXEN STRC
C2IE 12C_STOP SYNC STRB
C1IE S BRGH STRA
EEIE I2C_START TRMT ADFM
BCLIE R TX9D VCFGO
ULPWUIE 12C_READ TXD8 VCFG1
CCP2IE NOT_W BRG7 WDTPS3
ULPWUE NOT_WRITE BRG6 WDTPS2
SBOREN R_W BRG5 WDTPS1
NOT_POR READ_WRITE BRG4 WDTPSO0
NOT_BO UA BRG3 SWDTEN
NOT_BOR BF BRG2 C10N
IRCF2 WPUB7 BRG1 C10UT
IRCF1 WPUB6 BRGO C10E
IRCFO WPUB5 BRG15 C1POL
OSTS WPUB4 BRG14 C1R

HTS WPUB3 BRG13 C1CH1
LTS WPUB2 BRG12 C1CHO
SCs WPUBH1 BRG11 C20N
TUN4 WPUBO BRG10 C20UT
TUN3 10CB7 BRG9 C20E
TUN2 10CB6 BRGS8 C2POL
TUN!1 10CB5 PRSEN C2R

225

Reserved Words

Reserved Words

Name Name Name Name
C2CH1 PO P40 D2
C2CHO P1 P41 D3
MC10UT P2 AX0 D4
MC20UT P3 AX1 D5
C1RSEL P4 AX2 D6
C2RSEL P5 AX3 D7
T1GSS P6 S_IN EO
C2SYNC P7 S_OuT E1
SR1 P8 GPO E2
SRO P9 GP1 E3
C1SEN P10 GP2 E4
C2REN P11 GP3 E5
PULSS P12 GP4 E6
PULSR P13 GP5 E7
FVREN P14 A0 FO
ABDOVF P15 A1 F1
RCIDL P16 A2 F2
SCKP P17 A3 F3
BRG16 P18 Ad F4
WUE P19 A5 F5
ABDEN P20 A6 F6
ANS7 P21 A7 F7
ANS6 P22 BO GO
ANS5 P23 B1 G1
ANS4 P24 B2 G2
ANS3 P25 B3 G3
ANS2 P26 B4 G4
ANS1 P27 B5 G5
ANSO P28 B6 G6
ANS13 P29 B7 G7
ANS12 P30 Cco H300
ANS11 P31 C1 H600
ANS10 P32 Cc2 H1200
ANS9 P33 C3 H2400
ANS8 P34 C4 H4800
EEPGD P35 C5 H7200
WRERR P36 C6 H9600
WREN P37 Cc7 H12000
WR P38 DO H14400
RD P39 D1 H16800

226

Reserved Words

Reserved Words

Name Name Name Name

H19200 TMROINT128 TMR2PRE1POST7 TMR2PRE16POST15
H21600 TMROINT256 TMR2PRE1POST8 TMR2PRE16POST16
H24000 TMROEXTLA TMR2PRE1POST9 CAPTUREOFF
H26400 TMROEXTL2 TMR2PRE1POST10 CAPTURE1H2L
H28800 TMROEXTL4 TMR2PRE1POST11 CAPTURE1L2H
H31200 TMROEXTLS8 TMR2PRE1POST12 CAPTUREA4L2H
H33600 TMROEXTL16 TMR2PRE1POST13 CAPTURE16L2H
H36000 TMROEXTL32 TMR2PRE1POST14 COMPAREOFF
H38400 TMROEXTL64 TMR2PRE1POST15 COMPARESETHIGH
H57600 TMROEXTL128 TMR2PRE1POST16 COMPARESETLOW
H115200 TMROEXTL256 TMR2PRE4POST1 COMPAREINT
H250000 TMROEXTH1 TMR2PRE4POST2 COMPARESPECIAL
H312500 TMROEXTH2 TMR2PRE4POST3 X_A

H625000 TMROEXTH4 TMR2PRE4POST4 X_B

H1250000 TMROEXTH8 TMR2PRE4POST5 X_C

MSBPRE TMROEXTH16 TMR2PRE4POST6 X_D

LSBPRE TMROEXTH32 TMR2PRE4POST7 X_E

MSBPOST TMROEXTH64 TMR2PRE4POST8 X_F

LSBPOST TMROEXTH128 TMR2PRE4POST9 X_G

FASTMSBPRE TMROEXTH256 TMR2PRE4POST10 X_H

FASTLSBPRE TMR10OFF TMR2PRE4POST11 X

FASTMSBPOST TMR1INT1 TMR2PRE4POST12 X_J

FASTLSBPOST TMR1INT2 TMR2PRE4POST13 X_K
SLOWMSBPRE TMR1INT4 TMR2PRE4POST14 X_L

SLOWLSBPRE TMR1INT8 TMR2PRE4POST15 X_M
SLOWMSBPOST TMR1EXT1 TMR2PRE4POST16 X_N
SLOWLSBPOST TMR1EXT2 TMR2PRE16POST1 X_O

MSBFIRST TMR1EXT4 TMR2PRE16POST2 X P

LSBFIRST TMR1EXT8 TMR2PRE16POST3 X1

PU_OFF TMR1ASYNC1 TMR2PRE16POST4 X_2

PU_ON TMR1ASYNC2 TMR2PRE16POST5 X_3

EXT_H2L TMR1ASYNC4 TMR2PRE16POST6 X_ 4

EXT_L2H TMR1ASYNC8 TMR2PRE16POST7 X5

TMROINT1 TMR20OFF TMR2PRE16POST8 X_6

TMROINT2 TMR2PRE1POST1 TMR2PRE16POST9 X_7

TMROINT4 TMR2PRE1POST2 TMR2PRE16POST10 X_8

TMROINT8 TMR2PRE1POST3 TMR2PRE16POST11 X_9

TMROINT16 TMR2PRE1POST4 TMR2PRE16POST12 X_10

TMROINT32 TMR2PRE1POST5 TMR2PRE16POST13 X_1

TMROINT64 TMR2PRE1POST6 TMR2PRE16POST14 X 12

227

Reserved Words

Reserved Words

Name Name Name Name
X_13 HOMELCD ONELINE5X11

X_14 LCDCLEAR CGRAM

X_15 LCDHOME SCRRAM

X_16 INCCUR HSERSTAT_INCLEAR
X_UNITS_ON INCSCR HSERSTAT_OUTCLEAR
X_LIGHTS_ON DECCUR HSERSTAT_CLEAR
X_ON DECSCR HSERSTAT_INDATA
X_OFF LCDOFF HSERSTAT_INNODATA
X_DIM SCR HSERSTAT_OUTDATA
X_BRIGHT SCRBLK HSERSTAT_OUTNODATA
X_LIGHTS_OFF SCRCUR

X_HAIL SCRCURBLK

X_STATUS_ON CURLEFT

X_STATUS_OFF CURRIGHT

X_STATUS_REQUEST SCRLEFT

INITLCD1 SCRRIGHT

INITLCD2 ONELINE

CLEARLCD TWOLINE

228

ASCIT Table

ASCIT Table

229

ASCIl Table

Dec Hex Char Function Dec Hex Char Dec Hex Char
0 0x00 NUL Null 43 0x2B |+ 86 0x56 \
1 0x01 SOH Start of Heading 44 0x2C |, 87 0x57 w
2 0x02 STX Start of Text 45 0x2D |- 88 0x58 X
3 0x03 ETX End of Text 46 O0x2E 89 0x59 Y
4 0x04 EOT End of Transmit 47 0x2F / 90 0x5A 4
5 0x05 ENQ Enquiry 48 0x30 0 91 0x5B [
6 0x06 ACK Acknowledge 49 0x31 1 92 0x5C \
7 0x07 BEL Bell 50 0x32 2 93 0x5D]
8 0x08 BS Basckspace 51 0x33 3 94 Ox5E A
9 0x09 HT Horizontal Tab 52 0x34 4 95 0x5F _
10 0x0A | LF Line Feed 53 0x35 5 96 0x60

11 0x0B | VT Vertical Tab 54 0x36 6 97 0x61 a
12 0x0C | FF Form Feed 55 0x37 7 98 0x62 b
13 0x0D CR Carriage Retum 56 0x38 8 99 0x63 c
14 0x0E SO Shift Out 57 0x39 9 100 0x64 d
15 0x0F SI Shift In 58 0x3A 101 0x65 e
16 0x10 DLE Data Line Escape 59 0x3B ; 102 0x66 f
17 0x11 DC1 Device Cntri 1 60 0x3C |< 103 0x67 g
18 0x12 DC2 Device Cntrl 2 61 0x3D | = 104 0x68 h
19 0x13 DC3 Device Cntrl 3 62 Ox3E | > 105 0x69 i
20 0x14 DC4 Device Cntrl 4 63 0x3F ? 106 0x6A j
21 0x15 NAK Non Acknowledge 64 0x40 @ 107 0x6B k
22 0x16 SYN Synchronous Idle 65 0x41 A 108 0x6C |
23 0x17 ETB End Transmit Block 66 0x42 B 109 0x6D m
24 0x18 CAN Cancel 67 0x43 C 110 0x6E n
25 0x19 EM End of Medium 68 0x44 D M 0x6F o
26 Ox1A | SUB Substitute 69 0x45 E 112 0x70 p
27 0x1B ESC Escape 70 0x46 F 113 0x71 q
28 0x1C FS File Separator 71 0x47 G 114 0x72 r
29 0x1D GS Group Separator 72 0x38 H 115 0x73 s
30 Ox1E RS Record Separator 73 0x49 | 116 0x74 t
31 Ox1F us Unit Separator 74 0x4A | J 117 0x75 u
32 0x20 SPACE 75 0x4B | K 118 0x76 v
33 0x21 ! 76 0x4C |L 119 0x77 w
34 0x22 “ 77 0x4D | M 120 0x78 X
35 0x23 # 78 Ox4E | N 121 0x79 y
36 0x24 $ 79 Ox4F O 122 0x7A z
37 0x25 % 80 0x50 P 123 0x7B {
38 0x26 & 81 0x51 Q 124 0x7C |
39 0x27 ‘ 82 0x52 R 125 0x7D }
40 0x28 (83 0x53 S 126 0x7E ~
41 0x29) 84 0x54 T 127 0x7F Delete
42 0x2A | * 85 0x55 U

230

)

| S —

